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Asymptotic quantum field theory can be formulated without the axiom of microcausality, (strong
local commutativity). It is shown here that in certain cases microcausality is nevertheless a con-
sequence of the remaining assumptions of the theory. These cases are the ones for which solutions of
the basic equations can be obtained in perturbation expansion, i.e., the sealar, spin 4, and neutral
vector field. For the charged vector boson, for example, the microscopic causality condition cannot
be proved from the basic postulates. In the provable cases the functional derivative in the Bogoliubov
causality condition can be defined explicitly, and this condition can then be derived from the postulates
of asymptotic quantum field theory. In the other cases, Bogoliubov causality cannot be defined

explicitly.

I. INTRODUCTION

N the recent formulation of asymptotic quantum
field theory' the microscopic causality condition,

[A@@), A@)]- =0 for (z — y)’ > 0,

is not explicity assumed, even though this condition
is sufficient to assure the Lorentz invariance of the
time-ordered product. [Sinee the theory involves
time-ordered products in vacuum expectation values
only, strong local commutativity is not required for
their Lorentz invariances. For example, (0] [4(z),
A(y)]10) = 0for (z — y)* > 0 on the basis of Lorentz
invariance of 4 (z) only, so that (0] T(4(z)A(y)) |0)
is Lorentz-invariant without any assumption on
commutativity.] Instead, a fundamental integral
equation is proposed which determines all S-matrix
elements. Only those solutions of this equation which
are Lorentz-invariant are admitted as physically
meaningful solutions.

The basic assumptions of asymptotic field theory
(AQFT) are therefore only the validity of the usual
quantum field theory of the free fields for the in and
out field (i.e., the usual quantum field theory is valid

! R. Pugh, Ann. Phys. (N. Y.) 23, 335 (1963).

asymptotically), the wunitarity and Lorentz in-
variance of the S operator, and an interpolating
field characterized by a weak asymptotic limit. This
interpolating field can be completely eliminated,
resulting in the integral equation for the S matrix
and a particular way of going off the mass shell. The
dynamics of AQFT is thereby characterized.

In order to connect this approach with the older
formulations of quantum field theory, we investigate
the question to what extent the commutation rela-
tions of the interpolating field can be recovered.
We find that strong microcausality can indeed be
recovered, but characteristically only in those cases
which are amenable to a perturbation solution, e.g.,
the charged and neutral scalar field, the Dirac field
and the Maxwell field. The charged vector field does
not lead to microcausality.

The Bogoliubov causality condition thereby plays
an important role. We derive it from the assumptions
of AQFT for the microcausal cases (Sees. II-IV).
However, this causality condition is no longer defined
in the other cases (charged vector bosons, for ex-
ample, Sec. V). This fact can be regarded as re-
sponsible for the breakdown of the microcausality
proof.

495

Copyright © 1965 by the American Institute of Physics



496

II. SCALAR FIELDS
We consider first the real scalar field satisfying
(4i(@), 4:@))- = —iA@ — ), K@)Adilz) =0,
An(@) = AL@). (a

The interacting field operator connecting the in and
out operator is

A@) = 8" (4 @)8), = A1) + STA:i(@), Sl @)

The subscripts + and R denote the positive time
ordered and the retarded product. Expressed in
terms of functional derivatives® this field becomes

AG) = 4@ — i [ Mo ~ 98 sy @)
We consider the commutator [A(x), A(¥)]-,
(A@), AY)]- = —iA@Ex — y)
- f Ax(y ~ 2)A(x — 2))
) t &S 4 4
X 64:.(2,) [:S 6Ain(22):] 42 dz
+ [ ate - 2)a0 - 2
) t 6S 4 4
X 04,(22) [S 5Ain(z1)] 4z dz
+ f Aalz = 2)Axly ~ 22)[6Aif(zl) 6A?§zz)
38" 88 o
_ —*BA;D(Zz) ——BAin(z,)] d'z, dz,. (4)

Using 8(x — 2,)+0(z; — ) =6(y — 2,)+0(z, — y)=1
in the first and second integrals of Eq. (6) we obtain,
after cancellations,

[A@), A@)] = —ia@ — y)

~ [ A — 28l ~ 206 ~ =)o — 2

b} + 88
X 6A;n(21) <S aAin(z2)

) d*z, d'z,

+ [ A — 208 — 206 — )06 — y)

5 t 58 ) 4 4
X 64 .(2) (S 64;.(21) ¢z dz,. (5)
We have used®
[6/8A:a(2), 8/8A:u(22)]- = O 6)

1 F. Rohrlich, J. Math. Phys. 5, 324 (1964).
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to obtain Eq. (5). The right side of (5) vanishes on
the spacelike plane z° = ¢°, x 5 y, provided the fol-
lowing equation holds:

8/64:.(2)(S'88/64,,(2)) = 0
for 2§ > 2; andfor (2, — 2,)° = 0. )

That this is indeed the case can be seen as follows.
Equation (7) causes the first integrand to vanish for
all values of z, which are not in the past light cone
emanating from z,; but the A and 6 functions of
that integrand will vanish unless 2! > z° = ¢* > 2.
Since x # y, this implies that the first integral in (5)
always vanishes. Similarly, the second integral
vanishes because the first factors require 20 < z° =
y° < 25 while (7) makes the last factor zero under
these conditions. .

Equation (7) is just the Bogoliubov “causality
condition” which we now proceed to prove.

We can easily show that the condition (7) is a
consequence of the Lehmann, Symanzik, Zimmer-
man (LSZ) formalism. Any interacting field obeying
the asymptotic conditions ecan be expanded in the
form®

A@ = 4u@ + X3 [ @K - K

X 0] R(xz, -+ - z,) |0)} : Ailzy) -+ Aulza): . 8)

The R 5 product of (n 4+ 1) scalar field operators
is defined by

R(A(x)Ax)) -+ - Az.) = R(zzy -+ - z,)
= (—9)" 2, 6 — z)0(x] — z5) -+~ Bz}, — x)

X [ [A@), A@DL, -, AG@)]- (9)

where P indicates a summation over all permutations
2, -+ zh of z, -+ x, Using Eq. (3) we can write
condition (7) in the form

6j0(22)/6Ain(zl) =0
for z) > 2 andfor (z —2) >0  (10)

where j,(z,) = (O — m*)A(z,) = K(2,)A(z,). We
obtain from Eq. (8)

84, (22) -
84;.(21)

X (0| R(A(z)A(z)Axy) - -+ Alza) [0))
X Az - Az, .

> o [ @iKEEEEE) - K

an

*H. Lehmann, K. Symanzik, and W. Zimmermann,
Nuovo Cimento 6, 319 (1957).
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Only terms with both 2J and 2} > z9 are kept in the
R-product in Eq. (11). From the properties of the
R-product we see that the right-hand side of Eq. (11)
is indeed zero for 2} > 25. The Lorentz invariance
of the S operator and of its derivatives with respect
to the free fields implies that the right side vanishes
for all (2, — 2,)> > 0 if it vanishes for some. Thus
Eq. (10) follows and the Bogslinbov condition (7)
is proved.

These results are generalized to the complex scalar
field satisfying

[Ain(x)} Ain(y)]— = O)
[4:.@), ALW)]- = —iA@ — y), 12)
(O — m)A@) = 0.
The interacting field operator is given by
A@) = Au@) — i [ Aale — 28"~ ,“( = (3)

In analogy to the real scalar case, the interacting
field commutator is

[A@), A'@)-

=~ [ Ay ~ 208G — 20y — 20, — )

] t+ 88 4, 14
X Al [s 6Ai,,(z2)] @2 a5

+ f A — 2)My — 2)6(z — 2,)6(z — )

$ t 88 :] 4 4
S dz, d
X §4.(2) I: A iTn(zl) ae

This expression vanishes on the spacelike plane
(x — y)® > 0 with 2° = ¢°if

— 6.7:1 (22) —
BA :n(zl)

and for (2, — 2,)° > 0,

(14)

] + 68
SAL ) (s 6Ai,,<z2))
(15)

where j.,(2;) = K(2,)A(z,). The previous argument
concerning this applies as follows.

The LSZ expansion for the interacting field gives
the following current operator:

0 ]
for z, > 2,

jule) = T g [ @) KEIK@) -+ Kz

X (O|R(A@)A" () - - - A(z,,)) [0)}

X A (xy) - (16)

The R-product is defined in a way similar to Eq. (9),
but including both A" and A fields. We can apply

A'@)A@asy) - - -

An@) Al @) -+ Al(@an) .
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here the same considerations as in the real scalar
case in order to establish (15).

This completes the proof that for the scalar case
the usual form of microscopic causality follows from
the basic assumptions of asymptotic quantum field
theory as given in Ref. 1 and need not be given as a
further axiom.

III. SPINOR FIELDS

We consider the case of the Dirac spin-1 field.
The free-field relations are,

[Wa@), ¥oa)]. = [Wak), #.0)]. =0
[¥:x), P@)]e = i8as(z — )
Dy = ("9, + m)yi(r) = 0,
V@)@ = Yul@)(—7"0, + m) = 0
Sap@) = (¥*9, — m).pAlz).

In functional derivative form the interacting fields
are

V@ = vi@ +i [ 8he - 28’

an

6%()

Ska(z - x) d4

(18)

P°@) = P + 5 f s

m( )

The fact that we are now dealing with free-field
anticommutators leads to complications in the defini-
tions of functional derivatives of functions of spinor
operators.” In particular the rules depend on whether
the functional transforms like the product of an odd
or even number of spinors. These rules are given in
Ref. 2 and we note that S transforms like an even
number of spinor operators.

The interacting-field anticommutator is

[¥*@), PW): = iSusle — v)

— [ Surle — 2)SHes - y>[S;¢—(;%f¢—(z5
'
+ a; :g(zl) ax:izz)] o da
_ f S — 2,)8,4(2s — ?/)I:ST 5—%5(25)2—%(2—1)
.
- azizz)'axl??izx):' Tan 02
38" 88

+ f Ser(@ — 2,)S%s(z, — y)[

88" S
SYin(zs) 8Ph(2)

50(z) S¥L(z)

] d'z, d'z,. (19)
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Using the 6-function indentities as in the scalar case,
we obtain

W@, V@ = iSusle — 1)
+ [ 8ule — 284 — 00y — 200 ~ 2)

') + 88
X — (s
8¥ia(z1) oyin(zs)

) d'z, d'z,

- f Sl — 28,50, — y)6(x — 2)0(z, — y)

] + 88 4 a4
X— ( ) dz, dz,. (20)
‘l’in(zz) ?n(zl) '
We have used
[8/6¢:n(z2), 5/5';)&;(21)]—‘8 =0 (21)

and S'S = 1. Again, the conditions,
3jo(22) 5 ( + 88 )

= S = 0,
5';?::(21) 51;)311(31) oyin(2)

for 2 > 2 andfor (2, — 2,)° > 0; (22)

Sjp(a) _ 8 (* 88 >=0
SPin(z)  SYin(e) N 8PN(z) ’

for 25 > 22, and for (2, — 2,)° > 0

are sufficient to prove that the anticommutator (20)
vanishes on the spacelike surface (x — y)* > 0 with
7’ = 3°. The anticommutator then vanishes for all
points z and y with spacelike separation.

Expression (22) vanishes on the chosen spacelike
surface as a consequence of the basic postulates, just
as in the scalar case. By the L.SZ method we obtain
the following expression for the functional derivative
of the current operator:

Sin(&)
5‘I’in(z2)

= nz (71')-2 f (d*z)(d*y){ D(2,) D(2,) D(x) - - - Dfz,)

X O] R(¥(2)¥(z)¥(z2) - -+ Yx)P(y) -+ $(wn) 0)
X a(yl) e q(yn)}
X :¥ial@e) 0 Finl@)¥ia¥n) -0 Yialya):

D(z) and d(zx) are defined in (17).
The R-product of (n + 1) spinor field operators
Y(z) or ¥(z) is defined as

R(Y(@)¥(z)) - -+ ¥(z.)
= (@O"(=)" X 0 — 28] — z3) -+ - Ozl — 27)

(23)
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X [[ o [\l’(x): !l/(.’l:{)]_, ¢(II);)]+, 'ﬁ(xé)]— R \l/(xrlt)]+-
(24)

The number of ¥ and ¢ fields in the product is de-
noted by n, and n,, respectively. The R function
properties imply that 8j5(z1)/0¢ia(2;) is zero for
2] > 25. As the LSZ expansions for the field and
current operators depend only on the free-field
relations, the Lorentz invariance of the scattering
operator and the asymptotic properties, we have
proven that together with the interacting fields (18),
these imply the usual microscopic causality condi-
tion.

IV. THE ELECTROMAGNETIC FIELD

The special problems associated with the auxiliary
condition on the electromagnetic field have been
discussed in Ref. 1. We have

[4,°@), 4,°W)- = —ig.D@ —y),  (25)
and the interacting field is written in the form®
A,(x) = AS(@)

—i [ gaDetx ~ 28" 38 4 M o0 AM).
84V (@)

We adopt here the treatment in Ref. 1 of the sup-
plementary condition.

To prove microcausality we consider all matrix
elements,

@i | [Au@), A.@]- |6id)- (26)

With state vectors ¢! constructed by the technique
given in Ref. 1, it follows that all parts of (26) con-
taining an M term vanish because

(@i] 8,4%(@) lol2) = 0 @7

and because of the completeness of the in or out
states. The remaining parts of the matrix element
reduce, as in previous cases, to

@2 [Aux), A,@)]- |6i2)

= (@] [AR@), AW |¢in)

— f g,.xg.,D(x - Zx)D(y — 2,)8(y — 22)0(21 - x)
) 6 t 6IS
| 5AY(2,) (S 3A(z2)

X <¢f: ) |¢fg)> d421 d422

+ [ 000D — 2)Dly — 2306 — 2)0 — V)

(a) )

X (i (28)

+ 88 ) B\ 6. 4
: : in d'z, d'z,.
aA‘:<z2)( SAR() #ix) d &2,
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The right-hand side of Eq. (28) vanishes on the
spacelike domain (z — y)* > 0 if

8 (1.81 I ) _ Sis(@) _

8AN(@) N SAL)  8A%()

for 20 > 2 andfor (2 — ) > 0. (29)
The LSZ expansion for the current operator is
Ja(22) = O(2)A"(z2)

= > [@nioeoe - oe)
= n!
X (0] R(A" () A, (1) -+ A, (z) [0)}
X AL(z) - AR, (30)

and (20) follows upon functional differentiation in
analogy to the previous cases.

Thus, strong local commutativity follows also
for the electromagnetic field up to possibly gauge-
variant terms which disappear for matrix elements
between physical states.

V. THE CHARGED VECTOR BOSON
The free vector boson fields satisfy

[6(@), 87 @W))- = 0, [8)™@), 6@ = — 1wz — 1),

K@) () = 0, 8¢,°() =0, @3
A,,,.(.’L‘) = (g — auav/mz)A(x)'
We assume the interacting field in the form
$u(z) = ¢,(x)
. 58
— i | 8@ — 2AnE — 2)S' ——d'z. (32)
/ o= D5 )

The interacting-field commutator is, therefore,

[6u(z), 6,)] = —idu(z — 1)
- f 0z, — )0y — 2)A.(x — 2)) Ay — 22)

6 t 88
X - -
8i%(2,) ( Sn'™(22)

) d'z, d'z.

+ f 0(x — 2,)0(z; — YA,.(z — 2)0ay — 2,)
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6 1 58 4
X —n ( - ) d'z, d'z. (33)
&f’: (22) 8,%(21) ’
Again, the Bogoliubov condition,
8 ( + 88 )
in tin = O’
o' "(2,) o "(22)
for 22> 2 andfor (2, — 2,)° > 0, (34)

is sufficient to prove the vanishing of the right-hand
side of Eq. (33) for spacelike points (x — y)* > 0.
However, the functional derivative with respect to
the charged vector boson field cannot be explicitly
defined.? The implicit definition is

oF
3a"(2)

Therefore, we cannot give mathematical meaning
to the Bogoliubov condition (34) for the charged
vector boson. According to Eq. (35), we can only
specify commutators and not functional derivatives
explicitly. Although the LSZ expansion for the
interacting vector field can be made, the techniques
used for other fields break down in this case. There-
fore, it does not seem to follow from the basic assump-
tions that Eq. (32) defines a microcausal theory.

[8.°@), P8l = —i [ Bale—2) - d's. G5)

V1. CONCLUSION

The Bogoliubov causality condition is not ex-
plicitly defined in general. It is therefore not mean-
ingful to postulate it in all cases. For those cases
where a definition exists this causality condition can
be derived from the basic postulates of AQFT which
do not involve microcausality. Strong local com-
mutativity then follows by means of the Bogoliubov
condition.

The fields that can thus not be proven to be micro-
causal are exactly those fields which spoil the pos-
sibility of a perturbation solution of the integral
equation for the S matrix.
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Para-Bose and para-Fermi quantization are schemes of second quantization which generalize the
usual Bose and Fermi schemes. The different cases of para-Bose (para-Fermi) quantization are
labeled by a positive integer p, which is called the “order.” For p = 1, the usual Bose (Fermi) quanti-
zation is recovered. The high-p limit of para-Bose (para-Fermi) quantization is studied, and it is
shown that, to a large extent, the high-p limit of a para-Bose (para-Fermi) field is a Fermi (Bose)
field. The nature of the limit is studied in detail, and a paradox relating to the connection of spin

and statistics is resolved.

INTRODUCTION

ARA-BOSE and para-Fermi quantization, which

generalize Bose and Fermi quantization, were
invented by Green.' One of the most striking fea-
tures of this generalization is that a doubly infinite
number of new possibilities appears. For both the
para-Bose and para-Fermi cases, the different pos-
sibilities are labeled by a number p, the ‘“order,”
which can take any positive integral value. For
p = 1, the para-Bose and para-Fermi fields reduce
to Bose and Fermi fields, respectively. Knowing this
fact brings to mind the question of the limiting
behavior for p — «, which is the subject of this
article. Although with their original normalization
the para operators do not approach a limit for
large p, a simple change of normalization gives
operators which do have such a limit. The amusing
result is that, to a large extent, the high-p limits of
the (renormalized) para-Bose and para-Fermi the-
ories are the Fermi and Bose theories, respectively.
What we mean by “to a large extent’’ should become
clear in the following pages, and is summarized at
the end of the paper.

* Supported in part by the U. 8. Air Force Office of
Scientific Research under contract AFOSR 500-64 and by
glzlg National Science Foundation under contract NSF GP

1.

1 {. S. Green, Phys. Rev. 90, 270 (1953). A number of
other papers study the mathematics of parafields. The re-
quirement that the interaction Hamiltonian density be para-
local, together with certain experimental information, excludes
all presently known particles from being para. A derivation of
the selection rules on para particles necessary for this argu-
ment is given in O. W. Greenberg and A. M. L. Messiah,
“Selection Rules for Parafields and the Absence of Para
Particles in Nature,” Phys. Rev. (to be published). This last
paper also contains references to the literature.

RESUME OF RELEVANT INFORMATION
ABOUT PARAQUANTIZATION

Consider a set of annihilation and creation op-
erators, a, and a;, respectively, where k is a discrete
quantum number, which satisfy the commutation
relations

[[a;) al]iy am]— = —26kmal7 (1)
[[ak: al]t; a’MJ- = O! (2)

and the no-particle condition
aké() = 0, (3)

where &, is the unique no-particle vector, and the
upper (lower) signs are for para-Bose (para-Fermi)
quantization. Then

Theorem®: All irreducible representations in a
Hilbert space of Egs. (1) and (2) which satisfy
Eq. (3) also satisfy the additional condition

aai®, = pd.®,, P a positive integer, 4)
and are characterized, up to unitary equivalence,
by Eqgs. (3) and (4). For p = 1, the para-Bose and
para-Fermi cases reduce to Bose and Fermi, respec-
tively.

For later reference, we define a commutative set
of number operators n, by

m = 3, al. F p). ®)
These number operators have integer eigenvalues,
and satisfy the usual commutation rules

(724, a:]— = 5“‘1:
with the creation operators.
2 ). W. Greenberg and A. M. L. Messiah, cited in Ref. 1.
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CHOICE OF OPERATORS WHICH HAVE
A FINITE LIMIT
Because of Eq. (4), the operators a, do not have
a finite limit for p — «. Consider, instead, the
operators

t -3t
Ce =D "0y

for which Eq. (1), (2), (3) and (4) are replaced by

G = p‘*a,,,

[es, €1as Cnl = (—2/P)8imcs, (1)
e, €lay €nl- = O, @)

a®, = 0, (3"

ckcId)o = §,,P,. 4"

For the ¢ operators, p appears only in Eq. (1),
while for the a operators, p appears only in Eq. (4).

THE HILBERT SPACES c(p) AND a(p)

At this point we emphasize the dependence of
the theory of the para-Bose and para-Fermi op-
erators on the order p. From now on we show the
p dependence of all objects in the theory, and write
the operators as ¢,(p) and ¢,(p)?, and the no-particle
state as ®,(p). The Hilbert space on which these
operators act, C(p), is defined to be the closure of
vectors of the form

®len(p) 124(p),

where @ is an arbitrary polynomial. Similar remarks
apply for the original operators a.(p) and a.(p)%,
and, in particular for their Hilbert space, G(p),
which is defined to be the closure of vectors of the
form @[a.(p)t]Py(p). The Hilbert spaces €(p) are
the same as the G(p) for each finite p, but not in
the limit p — . Since the a and a' operators are
an irreducible set for all finite p, the same is true
of the ¢ and ¢! operators. The operators c¢(p) for a
given p are defined only on €(p); therefore operators
for different values of p cannot be compared directly.
However the expectation value of a polynomial in
the ¢’s for a given p in the no-particle state for the
same p is a numerical function which can be com-
pared to the corresponding function for a different
value of p. Since the set of all vacuum expectation
values uniquely characterizes the theory,’ we base
our discussion of the limit, for p — o, of the para-
Bose and para-Fermi theories of order p on the
limits, for p — «, of all the vacuum expectation

3 A. 8. Wightman, Phys. Rev. 101, 860 (1956); W. Schmidt
and K. Baumann, Nuovo Cimento 4, 860 (1956); R. Haag
and B. Schroer, J. Math. Phys. 3, 248 (1962); R. F. Streater
and A. 8. Wightman, PCT, Spin and Statistics and All That
(W. A. Benjamin, Inc.,, New York, 1964), Chap. 3; M. A.
Naimark, Normed Rings, translated by L. F. Boron (P.
Noordhoff, Ltd., Groningen, 1960), especially Chap. IV.
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values. The reconstruction of the Hilbert space and
the operators from the vacuum expectation values,
the “inverse problem,” has been described by the
authors cited in Ref. 3.

DEFINITION OF THE LIMIT, FOR p — «

We define the limit, for p — «, of @€(p) in terms
of vectors and operators without explicit p depend-
ence. For such vectors and operators, we define the
limiting elements to be the corresponding vectors
and operators constructed from the limit of the
vacuum expectation values. In general, the limiting
space need not be a Hilbert space; however the
limiting spaces for the para-Bose and para-Fermi
theories turn out to be well-known Hilbert spaces.
By our definition, the limit of every vector or op-
erator without explicit p dependence is a vector or
operator in the limiting Hilbert space, and conversely
every vector or operator in the limiting space is the
limit of some vector or operator without explicit p
dependence in the spaces €(p).

DISCUSSION OF THE LIMIT FOR EXPRESSIONS
‘WITH EXPLICIT p DEPENDENCE

In this case, the definition of the limit is more
subtle. Let O(p) be such an expression. For the
limit p — » of O(p) to exist we require: (1) that
the limits of all vacuum expectation values of
®1[c(p)]O(p) ®,lc.(p)T] exist, and (2) that there exist
an operator O(«) in the limit space which has cor-
responding vacuum expectation values, i.e., such that

lim (2o(p), ®1[cx(@)]0®)®lc:(p)'16(p))

= (@o(=), Ol @)]0(=)Calen( =) 18o(=)),
for all @, @,.

We emphasize that ¢,(« ), ¢x( ), and $( ) have
already been defined in the paragraph above. We
find that there are expressions with explicit p
dependence for which Condition (1) holds, but for
which there is no operator O(«) which can satisfy
Condition (2). In such cases we say that O(p) does
not have a limit.

THE LIMIT FOR THE SPACES c(p)
The limits of our two families of Hilbert spaces are

lim e®(p) = €™ (1), (6)

and
lim ¢®(p) = e®(1), (7)

where, for clarity, we have distinguished the para-
Bose and para-Fermi families by the superscripts
(B) and (F), respectively. In words, Eq. (6) and (7)
mean that the limit, for p — «, of the para-Bose



502

theory is the Fermi theory, and the limit of the
para-Fermi theory is the Bose theory. We remark
that in the limit the spaces @(p) become smaller.
For example, €™ (1) has only antisymmetric states,
while €® (p), p > 1, has states with a large variety
of different permutation symmetries. The limits of
the spaces @(p) are degenerate (one dimensional)
since the only vector in @(p) which has a limit
is ®,(p).

The results for the €(p) can be seen by studying
the algebraic manipulations used in the calcula-
tion of the vacuum expectation value (®,(p),
®lex(p), c(p)1®e(p)) of an arbitrary polynomial
in the ¢ and ¢'. The calculation consists in moving
the annihilation operators from left to right as
many times as necessary by applying Egs. (1’) and
(2’) and then using the no-particle conditions, Eqgs.
(3’) and (4’). The reader should convince himself
that the calculation can actually be completed in
the way just described. Since the right-hand sides
in Egs. (1’) and (2’) introduce nothing but higher-
order terms in p~', the leading term is obtained by
performing the same algebraic manipulations with
modified commutation relations obtained from Egs.
(1) and (2") by replacing all the right-hand sides
by zero. Now, these modified commutation relations
together with the (unmodified) no-particle condi-
tions are satisfied by the Fermi operators in the
para-Bose case, and by the Bose operators in the
para-Fermi case. Consequently, the limit for p —» «
of the above expectation value for a para-Bose
(para-Fermi) operator is equal to the expectation
value of the same expression for a Fermi (Bose)
operator.

For illustration, we give the exact expression for
a typical vacuum expectation value in the para-
Bose case:

(&), ) P)en(D) ¢aD) 2o(P))
= Stabim + (2/p — 1)8mdin. 8)
For p = 1, this is a Bose matrix element; the p — «
limit is the corresponding Fermi matrix element.
To give a geometric insight to what is happen-
ing here, let us consider the subspace of &‘®(p)
spanned by the two vectors c,(p)Tc:(p)T®,(p) and
c.(p)tei(p)t®o(p), b # I. According to Eq. (8), these
are unit vectors and the angle between them,
a = arccos (2/p — 1), increases from 0 to = when
p goes from 1 to «. Thus, for p = 1, the two vectors
are equal and span a one-dimensional space. For
greater values of p, the angle between the two
vectors opens up, and the space becomes two dimen-
sional. But, in the p — = limit, the two vectors
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become opposite and they again span a one-dimen-
sional space.

It follows from our discussion that the limit of
any polynomial of the para-Bose (para-Fermi) op-
erators which does not have explicit p dependence
(that is p occurs only implicitly in the ¢’s) exists
as an operator in the Fermi (Bose) space, and is
the same polynomial of the Fermi (Bose) operators.

THE LIMIT FOR POLYNOMIALS IN
THE NUMBER OPERATORS n.(p)

However the limit of a polynomial which has
explicit p dependence need not exist, and if it does
exist it can have a different functional form. An
important class of polynomials with explicit p de-
pendence is polynomials in the number operators
n(p), as defined by Eq. (5). In terms of the ¢ and ¢*
operators,

@) = ip{la®), a®)]. F 1.

The Hamiltonian for free parabosons,
H(()B)(p) = ;wmk(p)
= ip L alla®@), a@)l. - 1},

is a good example of a polynomial in the number
operators. The limit of such polynomials exists and
is given by the following theorem: the limit for
p — @ of ®lex(p), ex(p)?, na(p)] in the operators ¢, ',
and n of the para-Bose (para-Fermi) theory of order
p is the same polynomial in the corresponding
operators of the Fermi (Bose) theory. To show that
Condition (1) for existence of the limit holds, we
note that the commutation relations

()

(D), c.(P)]- = — duics(p), 9a,
@), @)~ = buci(®)’, (9b)

and the property of the vacuum
n(p)®o(p) = 0 (10)

hold for all parafield theories as well as for the
ordinary Bose and Fermi theories. In order to
calculate the vacuum expectation value of the above
polynomial ® we first make the number operators
travel toward the extreme right through repeated
application of Eq. (9), and then use Eq. (10). The
expression we are left with is the vacuum expectation
value of a polynomial in the c¢.(p) and ¢;(p)*. Since
the algebraic manipulations for a para-Bose (para-
Fermi) field of order p and for a Fermi (Bose) field
are exactly the same, we obtain the same polynomial
in both cases. We have proved above that the p — «
limit of the expectation value of the former is equal
to the expectation value of the latter, so Condition
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(1) holds. Clearly Condition (2) also holds since
the Fermi (Bose) number operators are the re-
quired limiting operators acting in the limit space
e (M)[e®1)].

Since the above result applies to any polynomial
in the n’s it applies in particular to the n’s themselves
and to the free Hamiltonian, leading to the following
results for their limits:

lim 2% (p) = n™(1),

p—o

(11)

lim H®(p) = HF(1). (12)

p—©
We write out Eq. (11) in terms of the c-operators
to show the qualitative change in form which occurs,

lim 3p((ct® (@), & )]+ — 1)
= H¢P @), 7@ + 1), ay)

Similar results are obtained in the case of para-
fermions.

Our statements about the p — o limits of the
parafield theories are schematically illustrated in
Fig. 1.

PARADOX RELATING TO THE CONNECTION
OF SPIN AND STATISTICS

We expect that the para-Bose and para-Fermi
operators satisfy the connection of spin and statistics;
that is, para-Bose operators must have integral spin
and para-Fermi operators must have odd half-
integral spin. On the other hand, in the limit p — o,
the para-Bose and para-Fermi operators become
Fermi and Bose operators, respectively, and so
violate the connection of spin and statistics. Since
the field does not change its spin in this limit, there
is a paradox. To formulate this paradox more pre-
cisely in a specific case, we consider the limit of
the free spin-0 para-Bose theories. For all of these,

3™, p), (@, pl- =0, (& —y)’ <0,

where 3¢'® is the Hamiltonian density of the para-
Bose theory of order p. However the limiting theory
violates the connection of spin and statistics, and

[P, 1), 7@ DI- #0, (-’ <0,

where 3™ is the free spin-0 Fermi Hamiltonian
density. In fact no inconsistency occurs here, since
as we now show, 3‘®(z, p) has no limit, and a
fortiors, its limit is not 3¢‘™ (x, 1). The Hamiltonian
density 5¢® is

3P (z, p) = 3p{[oe(z)/0z"]
+ [Vo@)]* + m’[p(x)]*} — (same),,
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para-Bose

para-fermi
F1g. 1. The parafield clock.

where
0@ = @n)* [ Prize@]?

X [k, ple™ + (&, p)'e™],

E =owk = & + m)} and the c(k, p) have
Dirae & functions rather than Kronecker § functions
in their commutation relations. When expressed in
terms of the ¢’s, 3¢® contains expressions such as

(e, . — 8, dple, c., plc, ..
The reader can verify that
lim 3p{[c® &, p)', ¢® (A, p)l, ~— 80 — 1}
=} & 1), e, 1) + 8 — 1}
in our sense of the limit. However the limit of

O(B)(ky 1) P) = %p[c(m(k) P): C(B)(l) P)]+

and the limit of the corresponding adjoint do not
exist. Condition (1) for the existence of the limit
of O'® is satisfied. A demonstration of this can be
given in & way similar to the discussion of the limit
of polynomials in the number operators given above.
Here, for brevity, we exhibit only the simplest non-
vanishing matrix element of O*®:

(&% ®), 0% (&, 1, D)™ @1, p)'¢™ @, p) 8> (p)

= 81 — q,)6(k — q) + ok — q,)8(1 — qz). (13)
Since the right-hand side is independent of p, the
p — « limit of the left-hand side of Eq. (13) exists.
Condition (2) for the existence of the limit requires
that there exist an operator O™ on the Fermi
space €‘®(1) which has corresponding matrix
elements; for our specific matrix element O‘® must
satisfy

(@7 (1), 07k, 1, 1)e™ (@, 1)'c™ (g2, 1) (1))
= 81— q)ék — q) + 8k — q)6(1 — q5). (14)

Clearly there is no such operator O™ on c‘¥(1),
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since in €™ (1) the matrix element must be anti-
symmetric under interchange of q,, and q.. Therefore
the limit of 0O, and also of 3¢®, does not exist,
and no inconsistency occurs.

SUMMARY

We can summarize this situation by saying that
in the high-p limit a spin-0 para-Bose field has
(a) annihilation and creation operators and an anti-
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commutator which approach the annihilation and
creation operators and c-number anticommutator of
a spin-0 Fermi field and (b) a Hamiltonian and a
set of number operators which approach those of
the spin-0 Fermi field, but that, on the contrary,
the Hamiltonian density of the high-order para-Bose
theory does not converge to an operator in the
Fermi theory. Analogous statements hold for the
high-p limit of a spin-} para-Fermi field.

VOLUME 6, NUMBER 4 APRIL 1965

Statistical Mechanics of Assemblies of Coupled Oscillators*

G. W. Forpt
Department of Physics, Untversity of Michigan, Ann Arbor, Michigan
M. Kac
The Rockefeller Institute, New York, New York
AND
P. Mazor

Lorentz Institute for Theoretical Physics, Leiden, The Netherlands
(Received 25 September 1964)

It is shown that a system of coupled harmonic oscillators can be made a model of a heat bath.
Thus a particle coupled harmonically to the bath and by an arbitrary force to a fixed center will
(in an appropriate limit) exhibit Brownian motion. Both classical and quantum mechanical treatments

are given,

1. INTRODUCTION

UR aim here is to study a simple mechanical
model, a chain of coupled harmonie oscillators,

in order to come to a deeper understanding of some
of the phenomensa associated with Brownian mo-
tion.'* With this model we are able to earry through
the program one would like to achieve with more

* Part of the work reported in this paper was done while
one of us (M. K.) was H. A. Lorentz Visiting Professor at
the University of Leiden. When this work was reported at
Yeshiva University in the Fall of 1963 Dr. N. L. Balazs
informed us that he had independently obtained some of
the results concerning the classical case.

+ Supported in part by a grant from the National Science
Foundation.

1 There is an extensive literature on the motion of coupled
oscillators, mostly concerned with motion in a lattice with
nearest-neighbor interactions. Some of the more recent
articles which have a bearing on our work are: P. Mazur and
E. Montroll, J. Math. Phys. 1, 70 (1960); P. C. Hemmer,
“Dynamic and Stochastic Types of Motion in the Linear
Chain,”” thesis, Norges Tekniske Hggskole, Trondheim,
Norway (1959); R. J. Rubin, J. Math. Phys. 1, 309 (1960); 2,
373 (1961); M. Toda and Y. Koguri, Suppl. Progr. Theoret.
Phys. (Kyoto) 23, 157 (1962); R. E. Turner, Physica 26,
274 (1960). )

2 The classic papers on the phenomological theory of
Brownian motion are: G. E. Uhlenbeck and L. 8. Ornstein,
Phys. Rev. 36, 823 (1930); M. C. Wang and G. E. Uhlenbeck,
Rev. Mod. Phys. 17, 323 (1945).

realistic interactions, This program, which really
goes back to Gibbs, goes as follows®:

(1) Solve the equations of motion of the mechanical
system consisting of a Brownian particle coupled to
heat bath. The solution consists of expressions for
the coordinates and momenta at time ¢ in terms of
the initial coordinates and momenta.

(i) Assume the initial coordinates and momenta
of the heat bath to be distributed according to some
statistical distribution, e.g., that of the canonical
ensemble.

(iii) Show that the coordinate and momentum of
the Brownian particle, as functions of time, will
then represent stochastic processes (whose statistical
properties arise from the initial distribution of the
heat bath) of the kind familiar from standard
theories.

This is a very ambitious program, and it is no
wonder that it can be carried out only for the simplest
models.

% See the article by H. Wergeland in Fundamental Problems
in Statistical Mechanics, edited by B. G. D. Cohen {North-
Holland Publishing Company, Amsterdam, 1962).
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We have a good idea of what the results of this
program should be, since, after all, Brownian motion
is a throughly studied experimental phenomenon
with a satisfactory phenomenological theory. In
general we expect to show:

(i) The approach to equilibrium. In particular,
the distribution of momentum of the Brownian
particle should approach the Maxwellian distri-
bution.

(i1) The description of this approach to equilibrium
should be contracted, i.e., should involve only a small
number of the possible variables describing the
system. Another way of saying this is that there
should be a reduced description in terms of which
the stochastie process is Markoffian.

(iii) What changes occur when one adopts a
quantum description of the system. Here we have less
of an idea of what we should expect, but somehow
the basic features of the stochastic process should
be preserved in the quantum description.

We can be still more explicit about what we mean
by a contracted description of Brownian motion;
we mean the Langevin equation of motion. For a
Brownian particle of mass m acted upon by an out-
side force F(z) this equation is

p = —fp/m + EQ) + F(2), @®

where p = md is the momentum of the Brownian
particle, f the friction constant, and E(f) is the
random force due to the heat bath. This random force
is a purely random Gaussian process characterized by

(EQ@) = 0, (EQEW)) = 2fkTs(t — 1),

where T is the temperature of the heat bath and k
is Boltzmann’s constant. Note that the Langevin
equation is a contracted description in the sense
that the heat bath is described by only two param-
eters, the friction constant and the temperature,
and that only the first two time derivatives of the
position z of the Brownian particle appear.*

In Sec. 2 we discuss the dynamics of a system of
coupled oscillators. There we formally carry through
the program for the case of an arbitrary coupling
of the oscillators. In Sec. 3 the arbitrary coupling
of a linear chain is considered, and we show that
there is a coupling for which, in the limit of an
infinite chain, the resulting stochastic process is
Markoffian. Taking the chain of oscillators with this
coupling as the heat bath, we derive in Sec. 4 the
Langevin equation for a Brownian particle. In Sec. 5
we discuss the quantum description of the system,
and in Sec. 6 we discuss the quantum Langevin

¢ That is, there are no memory effects.
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equation. Finally, in Sec. 7 we consider the Brownian
motion of a quantum oscillator.

2. DYNAMICS OF A SYSTEM OF
COUPLED OSCILLATORS

Consider a system of (2N + 1) eoupled oscillators
with Hamiltonian:

_ls a1

i=—N

N
Z q; A i

i, k=—N

)

Here ¢; and p; are, respectively, the canonical
coordinate and momentum of the jth oscillator.
The mass of each oscillator has been taken to be
unity. The interactions of the oscillators are char-
acterized by the 2N + 1) X (2N + 1) symmetric
matrix A, whose elements are the A4;,. At present,
we make no special assumptions about this matrix
except that it has no negative eigenvalues. The
canonical equations of motion may be conviently
written in matrix notations as follows:

4=p, P=—Aq ®)

Here p and q are (2N -+ 1)-rowed column matrices
whose elements are the p; and g;, respectively. The
formal solution of the equations of motion is

q(t) = cos (A¥)q(0) + A~*sin (A¥)p(0),

4).
p(®) = —A*sin (A1)q(0) + cos (A}))p(0),
where, e.g.,
cos A¥t = g %2:—71;: A, (5)

We now assume that at ¢ = 0 the system is in
equilibrium at temperature 7. That is, we assume
that the ¢;(0) and p;(0) are distributed according
to the canonical distribution

D(q(0), p(0) = (2m/B)*"*(det A)~}e (12 ()

where 8 = (k7)™ and det A is the determinant of A.
Note that there is a difficulty here, since det A = 0
if A has zero eigenvalues. We therefore assume for
the time being that A has no zero eigenvalues. The
expectation of any function F(q(0), p(0)) is given by

# = [ [ dgs(© - dgs(0) dp-v(©) - - dp(0)

X F@q(0), p(0))D(q(0), p(0)). (V)

Now we ask, what are the properties of the sto-
chastic variables ¢;(f) and p;(f) which result from
(4) under the distribution (6)? First of all, it is
clear that the process is Gaussian. This follows from
the fact that the distribution (6) is Gaussian and that
the relation (4) is linear. That the process is sta-
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tionary follows from the Liouville theorem of me-
chanics, which states that

D(q(®), p(®) = D(q(0), p(0)). (8)

It is well known that the statistical properties
of such a stationary Gaussian process are completely
described by the pair correlation functions. In our
case these are obtained in Appendix 1; the results are®

(:(Oput + 7)) = kT ||cos A¥r||;x, (92)
(g:(Op:(t + ) = —kT ||A™ sin Alr[|,,  (9b)
(g:()gu(t + 7)) = kT [|A™ cos Alr|li.  (9¢)

Note that the position correlation (9¢) involves the
inverse of A, which does not exist if A has zero
eigenvalues.

If we fix our attention on a single oscillator, say
the one with index 0, the momentum autocorrelation
is

@o(po(t + D) = kT ||cos Alr||o. (10)

This is the autocorrelation of a stationary Gaussian
process in one variable. It is well known that such a
process is Markoffian if and only if the autocorrela-
tion is an exponential, i.e.,

(Pt + 7)) = kTe """, (11)

where f is a positive constant. The question we turn
to in the next section is that of finding an interaction
matrix A for which (10) assumes the form (11).

3. THE INTERACTION MATRIX

In our model we assume the (2N 4 1) oscillators
are identical and that they are arranged in a chain
with eyclic boundary conditions. This means that
the interaction matrix 4 i1s a symmetric cyclic
matrix.® The elements of such a matrix can be
written in the form

| S
A = 51,2,

=N
X exp {i ENEZIFT k(m — n)}, (12)

where the symmetry of A requires
we = Wl (13)
The eigenvalues of this matrix are the quantities
w,s=—N,—-N+1,.--,N. Thatis
AE(.) — w?g(u)’ (14)
s We use the notation |[IM|{;x for the element in the jth
row and kth column of & matrix M.

8 See, e.g., G. Kowalewski, Determinantentheorie (Chelsea
Publishing Company, New York, 1948), 3rd ed., p. 105.
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where the eigenvector £’ is a (2N + 1)-rowed
column matrix whose elements are

£ = 2N + D7 exp {i[2r/@N + Dlsn}. (15)

These properties follow from the elementary formula

N

. 2w
> exp (dc(m —n) N & ) = Om.n

E=—N

—N<mn<N. (16

With this formula we can also readily demonstrate
that if F(A) is a function of the matrix A, then
1

N
SN 11,2, Fed

=N

FA) |mn =

. 2r
X exp {z SN + 1 k(m — n)}. a7
Note, incidentally, that the special case of nearest-
neighbor interactions is that for which
wr = & sin® [xs/(2N + 1)]. (18)

Consider next the limit N — =, the infinite chain.
If we make the additional assumption that o} is
slowly varying function of s, then (12) becomes

1 7" )
App = — de f(g)e' " °
2r f_, (19)
= 21—1__/:' d0 f(6) cos (m — n)9,
where
f(o) = {“’f}--(an)o/zr- (20)

The relation (17) becomes in this limit

IFA) |0 = -21; f_ 0 F(f(6)) cos (m — n)6. (21)

We are now ready to turn to the problem posed at
the end of the last section; that of finding an inter-
action matrix A for which

[lcos A¥t|lg = """, (22)

Using the result (17) we see that for a finite matrix

1 N
E cos w;t.

) —_
|lcos A%t||ee = N+ 1,2,

(23)
For any choice of the w, this is a quasiperiodic func-
tion and cannot be of the form (22). However, in
the limit of large N, we can use (21) which gives

1

|lcos A¥e[loo = 5= f " 46 cos {f(0)1).

o (24)

Taken with our requirement (22), this becomes an
integral equation for f(8). The answer is essentially
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unique and is’
f(8) = f* tan® 36 (25)

There is a difficulty here, however; when (25) is
inserted in the expression (19) for the matrix ele-
ments, the expression diverges! What we must do is
employ a second limiting process (after the limit
N — ), defining

fo.(6) = f: tan2g, 6] < 8., 26)
0, 0. < 6] <
Here
wy, = ftan 16, (27)

is a high-frequency cutoff in the spectrum of eigen-
frequencies which ensures that the matrix elements
(19) are finite. This frequency cutoff corresponds to
a ‘“‘microscopic interaction time” wi' which we
assume is very small compared with the ‘“macro-
scopic relaxation time” f'. The result (22) holds
strictly only in the limit w;, — . Alternatively,
we can say that, for w, >> f the result (22) holds for
times long compared with w7'.

Our model, then, is that the interaction matrix
elements are given by (19) with f(6) given by (26)
with wy, > f. If in (24) we make the change of
variable w = f tan %6, we find

1

”COS A tl |00 -3, 42 COS wl. (28)

I
d
- W + f
In the limit w;, — = this becomes e and, there-
fore, the Gaussian process p,(f) becomes also Mark-
offian.

—flel

4. THE LANGEVIN EQUATION

Having seen that our model leads to a Gaussian
Markoffian stochastic process for the collection of
coupled oscillators, we are led to ask whether it also
leads to the Langevin equation for the motion of a
single particle coupled to a heat bath consisting of
such oscillators. In this section we see that this is
indeed the case.

We select from the chain of (2N + 1) oscillators,
the particle with index 0 to be the Brownian particle;
the remaining 2N oscillators represent the heat bath.
The outside force on this particle we denote by

F@t) = F(q.,®). (29)

If we define F(t) to be a (2N <+ 1)-rowed column
"What is unique is the spectrum of eigenfrequencies:
g(w) = 20/(xf'(8)), where 6 is the function of « cobtained by

nverting the equation «? = f(8). For (25), ¢(w) = (2f/7r)
(? + /).
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matrix whose elements are all zero except for the
zeroth element which is F (), then in the notation
of Sec. 2 the equations of motion for coupled “particle
and heat path” are

4=p,  P= —Aq+ FQ). (30)
The formal solution of these equations is
q(#) = cos Atq(0) + A~* sin Atsp(0)
+ f dt;M_t_) F(t'), (31&)
p(t) = ¥ sin Atq(0) + cos Atip(0)
+ f dt’ cos ANt — YF(F).  (31b)
o

If, now, we take the zeroth element of Eq. (30) for p
and substitute (31a) we get

Do = — 2 ||A cos A¥t|l,; ¢;(0)
— Z HA* sin A”Hoi p:(0)
— [ ar 1A sin B — 1)]F (@) + FO).

Next, we eliminate p,(0) between this equation and
the zeroth element of Eq. (31b). The result can be
written in the form

Do — F(t) = “"Y(t)Po + E(t)

+ f dt' () — At — 1]

X |lcos A¥t — )]0 F(t), (32)
where

L P %

() = ISl — o flcos 11, 33
and
E@) = = 2 {v(») ||Atsin A}]),,
+ |IA cos At|]o;}¢,(0) + Z {(v() |lcos A}e]|,;
— ||} sin A¥¢[5,}p,00). (34)

Note that the coefficient of p,(0) vanishes in this
expression. Equation (32) is the equation of motion
for the Brownian particle. The right-hand side is
the net force exerted -on the Brownian particle by
the other particles, i.e., by the heat bath. The first
term represents a frictional force with time-depen-
dent “friction coefficient” «(t), the second term
represents a fluctuating force E(¢) depending upon
the initial state of the heat bath, and the third
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term represents a memory effect depending upon the
past history of the motion of the Brownian particle.

If we assume that the interaction between the
Brownian particle and the heat bath is invariant
under translations, we have

Z Ao’i = O,
and this in turn implies that (34) may be written
E(t) = =32 {v(t) ||At sin A}t],,

+ 1A cos A¥]]}[4:(0) — ¢o(0)]
-+ Z{ v [lcos A%Hm - HA* sin Aitﬂw}pi(()), (36)

(35)

where the prime on the sum denotes the omission
of the term j = 0. Thus the fluctuating force depends
only upon the initial eoordinates of the particles of
the heat bath relative to the initial coordinate of the
Brownian particle, and is independent of the initial
coordinate and momentum of the Brownian particle.

Consider now what happens when the matrix of
interactions is that of the model discussed in Sec. 3,
in which the matrix elements are given by (19)
with f(6) given by (26) in the limit w, >> f. For this
model

”COS A}If“oo = ¢ ! (37
and therefore, from (33) we find that
lim~y(®) = f, (38)

which is a constant.

This in turn implies that the last term on the
right-hand side of (32) (the memory-effect term)
becomes, in the limit, identically 0!

With these results, (32) takes the form

Bo — F(t) = —fpo + E(1), (39)
with
E(t) = — 2 ||fA*sin Alt + A cos A't]];4;(0)
+ 2 |If cos At — A¥sin Abtf[op,(0).  (40)

Equation (39) is the Langevin equation.

It remains to prove that the statistical properties
of E(t) become (again in the imit N — «, oy, > f)
those of a purely random Gaussian process. This
depends, of course on the statistical assumptions
concerning initial positions and momenta.

We would like to require that at { = 0 the heat
bath is in equilibrium at temperature 7 and the
simplest way of doing this is to assume that the
initial distribution is the canonieal distribution (6).
This however is, strictly speaking, impossible since
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(35) implies that w, = 0 so that det A = 0 and the
canonical distribution becomes improper. The dif-
ficulty is not serious and can be remedied, e.g., by
slightly modifying the matrix A; i.e., replacing it by
(I is the unit matrix)

A+ e, 1)

where gy, though positive for every finite N, ap-
proaches 0 as N — o (as fast as one pleases). Now
(35) is only approximately true and the ecanonical
distribution (6) is proper. We hope that the reader
does not become unduly confused by our use of the
symbol A to denote three different matrices. We use
it to denote the finite eyelic matrix (12), the modifica-
tion (41), and last but not least for the infinite
cyclic matrix (defined only with the cutoff «.).
Clearly, since the distribution (6) of the ¢;(0) and
p;{0) is Gaussian, E(t) is a Gaussian process. We can
form its covariance with the help of the results of
Appendix 1, and, in the limit considered throughout
this paper, we find that

(EQE@)) = kT ||(f* + A) cos AH(t — )]]oo.  (42)

But the matrix A is given by the model of Sec. 3;
hence, using (21), we find

(E(EQ))

KT [ —
= f_wdwcr)Sw(t ).

This last integral is the well known expression for
the Dirac delta function, so we have

(EQDE@)) = 2fkT8(t — 7). (43)

Thus E{t} is a purely random, Gaussian, stochastic
process and Eq. (39) is the Langevin equation for
Brownian motion.

In order that the equation of motion (32) be-
come the Langevin equation it is necessary that (i)
the friction constant y({) be independent of time;
(i) the stochastic process E(t) be a purely random
Gaussian process; (iii) the memory effects disappear.

We feel that it is striking that, for our model,
these three properties are intimately related. Un-
doubtedly this fact is of much more general signifi-
cance,

5. THE MOTION OF COUPLED QUANTUM
OSCILLATORS

We turn now to the question of the changes re-
quired for a quantum mechanical deseription of
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the motion of coupled oscillators. The answer is
that much of our previous discussion is, formally at
any rate, entirely unchanged. Thus in our discussion
of See. 2, the Hamiltonian (2) is unchanged, but the
coordinates ¢; and momenta p; are now operators
whose commutation rules are

[p:, pk} =0,
thd.

[gi) @] = (44)

lgi, o] =

The equations of motion (3) are the equations of
motion in the Heisenberg picture, and their solu-
tion (4) relates the Heisenberg operators at time ¢
to the operators at the initial time.

At t = 0, we assume the system is in equilibrium
at temperature T. In the quantum description this
means that the initial state of the system is described
by the density matrix corresponding to the canonical
ensemble:

#q(0), p(0)) = exp {—BH(q(0), p(0)}.

The expectation of any function F(q(0}, p(0)) of the
operators q(0), p(0) given by

F) = Tr {F(q(0), p(0)e(a(0), pO)}
B Tr {p(q(0), p(0))}

Just as in the classieal case, we now consider the
properties of the stochastic operators ¢;(t) and p;(t)
which result from the equation of motion and the
initial density matrix. These properties we describe
in terms of the correlation funections, the simplest
being the pair correlation functions. These are ob-
tained in Appendix 2; the results are

@;Opt + 7))

(45)

(46)

rA! ha! ; }
=5 [ coth T cos A’r + ¢sin A%y Al (47a)
{¢:(Dg.(t + 7))
; -
= 2%:; [coth -2@% cos Alr + 7sin Alr Il (47b)

{g:(Opi(t + 7))

CJal-

Note that in the limit & = 0, these expressions be-
come identical with the classieal expressions (9).
As indicated in Appendix 2, the higher correlations
are given by the rule:

—

coth ILA sin Alr + ¢ cos Alr (47¢)

2kT Al

Correlations of an odd number of ¢’s and p’s
vanish. The correlation of an even number of ¢’s
and p’s is equal to the sum of products of pair cor-
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relations, the sum being over all possible pairings of
the operators, with order preserved.

Except for the italicized proviso that the order be
preserved, this rule is identical with the classieal
rule for a Gaussian random process.® The stochastic
operators also have the classical stationarity property;
the correlations depend only upon the time dif-
ferences. There are, however, obvious differences be-
tween the properties of the stochastic operators
and the properties of the corresponding classical
stochastic process. The principal differences arise
from the fact that the quantum operators do not
commute. Thus there are many (indeed, an infinity!)
of correlations of the quantum operators which can
be associated with a given classical correlation,
corresponding to different orderings of the operators.
As a simple example,

(félp + (1 - e)pq}:;uanwm — <Qp>classicsl 3

where ¢ is an arbitrary complex number. Another
difficulty comes from the fact that the product of
two noncommuting Hermitian operators is not
Hermitian, and, therefore, does not correspond to a
physical observable. We see this difficulty explicitly
in the correlations (47), which are complex functions,
whereas the expectation value of a physical observ-
able should be real.

The difficulties we mention would be largely
resolved if we had a conventional definition of the
product of operators with the following properties:

(a) The product is independent of the order of the
operators.

(b) The product of a number of Hermitian op-
erators is itself Hermitian,

(¢) The classical pair decomposition rule for ex-
pressing higher correlations in terms of pair correla-
tions holds.

For our system of coupled oscillators there is such a
conventional product, namely the ordered product
or normal product introduced in quantum field
theory®; it is defined as follows. In Appendix 2 we
show how the operators q(0) and p(0) can be ex-
panded in terms of creation and annihilation opera-
tors for the normal modes;

10 =i 2 £(L) @ - o),
20 = X &%), + a9,

8 Bee, e.z., Wang and Uhlenbeck, Ref. 2.
® See, e.g., G.-C. Wick, Phys. Rev. 80, 268 (1950).

(48)
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Here £ is the eigenvector of the interaction matrix

A, and «’ is the associated eigenvalue
Af“) _ w2£(a)

The operator a, is the annihilation operator for
the sth normal mode and a* is the corresponding
creation operator. Their commutation rules are

a,] = [a%, a¥] = 0. (50)

(49)

[au aﬁ] =9 [au

STy

The time-dependent operators are expressed in terms
of the a, and a* by inserting (48) in (4). We find

a0 = i () et — o), o

p(t) = Z {‘”( ) (@™ " + a*e’").

The normal product of a number of the operators
a, and a* is defined to be that product in which all
the a* are written to the left of all the a,. Because of
the commutation rules (50), this defines a unique
order. The normal product of a number of operators
g;(t) and p;(?) is the product in which the expansions
(51) are used and each product of the a, and a* is
written in normal form. We denote the normal
product by a colon placed before and after the
product of factors. As an example,

g, ()palts) = i Z 2 ( )sf“s;”[aae—w-mw

— aq;arel(w.h—wyla) + ata'e—:(w.h—urta)
— ata*:ei(w.h+w,t,)]-

The normal product fulfills our requirements. It
us clearly independent of the order of the factors,
and, since a* is the Hermitian conjugate of a,, the
normal product of a number of Hermitian operators
is Hermitian. Using the results given in Appendix 2,
we can show that the pair correlations of normal
products of the ¢;(f) and p.(t) are

(pi(Dpalt + 7)) = ||[PRAY/ET) cos Alr]l,s,
Cau(Dq(t + 7)) = ||IPGAYETIA™ cos Azl (52)
Ca(Opu(t + 1)) = —||P(RAYET)A™ sin Alz][,,.
Here we have introduced the Planck function

P(x) = kTz/(€ ~ 1). (53)

When z = hw/kT the Planck function is the average
energy, relative to the ground state, of a quantum
oscillator of frequency w. As ¢ — 0, P(z) — kT,
the classical equipartition energy.

The higher correlations of normal products are
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given by the well-known rule for a Gaussian random
process:

The correlation of the normal product of an odd
number of ¢’s and p’s vanishes. The correlation of
the normal product of an even number of ¢’s and p’s
is equal to the sum of products of pair correlation
of normal products, the sum being over all possible
pairings.

What we can say, then, is that the correlations of
normal products of our stochastic operators are
identical with those of a stationary Gaussian process
whose pair correlations are given by (52).*°

Finally, if we fix our attention on a single oscilla-
tor, the one with index 0, the momentum autocor-
relation is
(poD)po(t + 7)) = ||P(RA}/ET) cos Alr||oo. (54)
Just as in the corresponding classical process, we can
ask whether there is an interaction matrix A for
which (54) is an exponential and, therefore, the
corresponding Gaussian process is Markoffian. The
answer is that we can, but that it is temperature-
dependent, and, therefore, not of physical interest.
If we use the model discussed in Sec. 3, in which the
matrix elements are given by (19) with 7(6) given by
(26) in the limit wy, >> f, we find (54) becomes

(:Po(OPo(t + 7))

2[ de(hw) _{_fg €OS wT.

In the limit A — 0, this becomes identical with the
classical result obtained earlier, and the process
becomes Markoffian.

6. THE QUANTUM LANGEVIN EQUATION

The formal manipulations we used in Sec. 4 to
derive the Langevin equation are unchanged when
we interpret the ¢’s and p’s as quantum operators.
In particular, when the matrix of interactions is
that given by the model of Sec. 3, in which the
matrix elements are given by (19) with f(6) given by
(26) in the limit w;, >> f, we obtain an operator
equation of motion which is formally identical with
Langevin equation (39). That is

po — F(t) = —fpo + E¥),

(55)

(39")
where

E() = — 2. ||fA* sin A'f + A cos A't]s; ¢:(0)

+ Z_: ||f cos A¥z — Asin Alt||; p:(0). (40')

10 Essentially the same point is made in connection with
the quantum description of statistical light beams by E. C. G.
Sudarshan, Phys. Rev. Letters 10, 277 (1963). See also R. J.
Glauber, Phys Rev. Letters 10, 84 (1963).
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The operator Langevin equation is an equation of
motion for the time-dependent Heisenberg operators
po(t) and g¢o(t). The operator F(t) is the external
force operator,

F(t) = (0 [po(t), V{go(®), D], (56)

with V{g,, t) the (time-dependent) potential of the
external force. The random-force operator E(t) is
in fact independent of the operators p,{0) and g,(0)
since their coefficients in the expression (40’) vanish
for our model of the interaction matrix. Beeause of
the commutation rules (44), this means that

[9:(0), E()] = [p.(0), E()] = O. (67

We assume that the statistical state of the initial
coordinates and momenta of the heat bath is de-
scribed by the density matrix (45). Just as in the
classical case, this means that at ¢ = 0 the heat bath
(i.e., the oscillators other than the Brownian parti-
cle} is in equilibrium with a fictitious force-free
Brownian particle. Since the random-force operator
E(¢) is independent of the initial coordinate and
momentum of the Brownian particle, its stochastic
properties are unaffected by the dependence of the
density matrix upon these operators. The covariance
of the normal product is readily obtained using the
results (52), we find

CEWMEQR + 7))

= ||(f* + A)P(RA}/KT) cos Alrlles.  (58)

But for our model, we may use the general expression
(21), with (8) given by (25). Hence

CEQE@R + 7)) = -21; f_ de f(1 + tan® 16)

X P(-—— [tan ga]) cos (fr tan $6)

2ff de(};f) COS wT.

Correlations of higher normal products of E{f) are
again given by the rule for a Gaussian random
process. Hence, the stochastic properties of the
random operator E(f), as expressed by the correla-
tions of normal products, are identical with those of a
stationary Gaussian process whose covariance is
given by (59). In the limit # — 0, this covariance
approaches the corresponding classical covariance
(43), which is the covariance of a purely random
Gaussian process. However, for finite , (59) is the
covariance of a Gaussian process which is not even
Markoffian. This is the chief difference between the

(59)
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quantum and classical Langevin equations for our
model.
As an elementary application, consider the motion
in a constant field of force,
F@) = (60)
The solution of the operator Langevin equation is

polt) = e "'po(0) + 8(1 — &77")

+ f dt' e “TUE@Y.  (61)

If we average this expression over the initial state
of the heat bath, we find"!

@o®) = ¢ "'po(0) + f'6(1 — €7,  (62)
since (E(t)) = 0. After a long time (¢ >> ') we find

po(t)) ~ 8. (63)
This is the analog for our model of Ohm’s law. The
left-hand side is the “current,” which in the steady
state is proportional to the applied field, and in-
versely proportional to the “resistance,” ie., the
friction constant.

The mean-square “fluctuation current’” may also
be obtained from (60)

(:[po(t) — (o())T2)
- fa Sy e f Car e~V OCEWEE) ). (84)

Note that we have used the normal produét in the
definition of the squared fluctuation. Using the
expression (58) for the covariance of E(f), we find

(po(®) — Po(DNF)

2ff ( ) !1 — g Umiert|2
do P W) T = | (65)
where we have used the elementary result
f at f dr’ e T e YD cogw(t — 1Y)
1] 0
=1 - "N/ = W) (66)

In the steady state, i.e., when ¢ 3> f~%, (65) becomes

i) = oy =2 [ p(2) s om

This is the analog for our model of the Nyquist
formula, which relates the noise power spectrum

1 The result of the average over the states of the heat
bath is still in general an operator function of ¢4(0) and p(0).
We trust that our definition of this average, which involves
an average over the initial coordinate and momentum of a
fictitious Brownian particle, is not confusing,
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to the resistance and the absolute temperature.'?
Note that if we had used the ordinary product in-
stead of the normal product, we would find

<[p0(t) - @0@»]2)
= ([po(t) — @o(M)]-[po(?) ~ (Do)

. by 2 [ g e 1
= () = o)+ 2 [ do e (69

The added integral is clearly related to the zero-
point fluctuations of the heat bath. It is also diver-
gent in the limit w;, — , 80 we have retained this
cutoff explicitly. Which of the possible definitions
of the product corresponds to an experimental
measurement of the fluctuation spectrum? This, in
the last analysis, must be determined by the experi-
ment itself. We tend to the opinion that the normal
product is the physically appropriate definition,
since it leads to a noise spectrum which vanishes at
absolute zero.

7. BROWNIAN MOTION OF A QUANTUM
OSCILLATOR

As a second application of the quantum Langevin
equation, we consider the case of the harmonic
oscillator, for which the external force is'?

F(ty = —£qt), (69)

where « is the natural frequency of the oscillator.
The quantum Langevin equation (39°) becomes

Po + £’q0 = —fpo + E(t), (70)
to which we must append the equation
go = Do- (71)

The solution of this pair of coupled equations is

g(t) = e ¥ {[cos vt + (f/20) sin vt]q,(0)
+ »7" sin vip,(0)}

-+ ft dgr e ¢ lsin v(t — 1YE(),
: ’ (72)
po(t) = e ¥ {—(&/v) sin »tq,(0)
+ [eos vt — (f/2) sin »E]po(0)}

+ ft dt’ e " Vcos v(t — 1)
— (f/2) sinv(t — £)]E().

12 For elementary discussion of the Nyquist formula and
its quantum generalization see C. Kittel, Elementary Statis-
tical Physics (John Wiley & Sons, Inc., New York, 1958),
pp. 141-153. See also J. Lawson and G. E. Uhlenbeck,
Threshold Noise Signals (McGraw-Hill Book Company, Inc.,
New York, 1950), especially pp. 64-79. .

12 The Brownian motion of a quantum oscillator is con-
sid%re)d in a paper by J. Schwinger, J. Math. Phys. 2, 407
(1961).
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Here
v = (& — (73)

and we restrict our discussion to the underdamped
case, where « > %f, so » is real and positive.

The mean motion of the oscillator is described by
the operators obtained by averaging (72) and (73)
over the initial states of the heat bath. Since (E(¢)) =
0, we have

(9(0)y = e™¥"{[cos vt + (f/2v) sin vt]go(0)
+ v sin vip,(0)},
(Po(t)y = e ¥ { — " sin vlgo(0)
+ [cos vt — (f/2v) sin »t]p,(0)}.

These are just the operator solutions of the average
of the equations of motion (70) and (71). We see
from (74) that these operators vanish for ¢ > {7%;
the mean motion of the oscillator vanishes for times
long compared with the ‘“‘macroscopic relaxation
time’” {7,

To see more precisely what we mean by the
operators (74), consider the coordinate representa-
tion. The Heisenberg state of the oscillator is then
specified by a time-independent wavefunction
¥[9,(0)], and the initial momentum operator is repre-
sented by —ih 8/0¢,(0). The simplest kind of ques-
tion we can ask about the Heisenberg operators is
their expectation value, denoted by a subseript “ex”
to the operator. For example,

(74)

@O = [ d0,0) ¥¥1as(OKao(®)¥1s0)
= ¢™¥*{(cos vt + (f/20) sin v1)[qo(0)]ux
+ v sin v[po(0)]ex} . (75)
As a simple illustration, if the wavefunction is
Vgo(0)] = (a/fm)le b=, (76)
then
[260)]ex = 20,  [Pe(0)]ex = O, (7
and
(@o(t))ex = € ¥'[cos vt + (f/2) sin vtlzy,  (78)
@o(B)ex = —e V%% sin viz,.

The operator describing the fluctuation of the
displacement of the oscillator about the mean dis-
placement is

2(8) — (go(8))

t : ’
- f ar e‘*“‘—">s—~—~—m"(‘v“ Dewy. (o)
43
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The mean-square fluctuation in displacement we
express as the mean of the square of (79), written as
a normal product. Using (59), we find

(:lgo(® — (go(*2) = g,,t f: do P (1%)

1 — e Y cosvt + (3f —iw)r ™ sinst]|®

o — & + tfw

(80)

d

Here we have used the following result of an ele-
mentary but tedious integration

fz dat’ f‘ dir? e e S_ly(t_—_tg
0 0

14

e_af(t_,rl) Sin V(t —_ t,,)

X cos o(t’ — 1)

3 l1 — V' [eos vt + (3f —dw)i " sinyt]|? @81
- o — & + ifo :
The time dependence of the mean fluctuation in
displacement, as expressed by (80), is rather com-
plicated. It does, however, have the simple feature
that, for times long compared with the relaxation
time {77, it approaches an equilibrium value

(:[go® = (o))" ea
P(ho/kT)

_2 [ :
= 1‘__/; de (wz —x2)2+w2f2

In the classical limit we use the property of the
Planck funection (53)

(82)

P(hw/kT) — kT, as h— 0. (83)
The remaining integral in (82) is elementary:
of [ 1 _
pu ‘/; dO) (w2 — K2)2 + w2f2 =K , (84)
and we find
(:[go(®) = {@o(D)T )eg = kT/*, a8 h— 0, (85)

which is the classical equipartition result.

Another simple limit of (82) is the weak-coupling
limit, in which the coupling of the Brownian particle
to the heat bath is weak compared with the oscillator
coupling. That is, x >> f. In this limit the resonance
denominator in (82) becomes sharply peaked at
w = x, with a width & f. Hence, we can evaluate the
Planck function at w = « and perform the remaining
integral using (84). We find

Cla® = (@) o — SP(E), for x>1. 80)

This is the well-known Planck result for the mean-
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square displacement of an independent oscillator of
frequency « at temperature 7.

APPENDIX 1: CORRELATIONS IN A SYSTEM
OF COUPLED CLASSICAL OSCILLATORS

Consider first the correlations of the initial values
of the coordinates and momenta, whose distribution
is [e.f. Eq. (6)]

D(q(0), p(0)) = (2r/8)*""*(det A)™}
X exp {—g [Z P?(O) + JXI; Qi(O)A:'ka(O)]}- ¢y

Since this is a Gaussian distribution, all higher
correlations can be expressed in terms of the pair
correlations. These are (8 = 1/kT):

@i0)p(0)) = kT5;s,
(2:(0)g:.(0)) = 0,
(9:(0)q(0)) = kT [|A™|;s.

These expressions are consequences of well-known
integral formulas for Gaussian distributions.**

The pair correlations for the time-dependent
coordinates and moments are found from (4), using
(2). We have for the momentum correlation:

@(Opt + 7)) = 22 {||A} sin A¥t]],,,

m,n

@)

X [|AY sin A}t + 1) {[1i(qn(0)2.(0))

+ |lcos A¥||;n [|cos AX(t + 7)| (D (0)pa(0))}
= kT{||sin A*ssin A*(z 4 )

+ cos Atz cos AX(t + 1),

where we have used the fact that the matrix A is
symmetric. Using the formula for the cosine of the
difference of two angles, we find

@:Oput + 7)) = KT |leos A'rll.  (3)

In a similar way, we can also show
(@:(Ope(t + 1) = —kT ||A7 sin Alrlln, (@
(@:(Ogu(t + 7)) = kT ||A™" cos Alr||. )

Since the process is Gaussian, the higher correlations
are given by the following rule®:

The correlation of an odd number of coordinates
and momenta vanish. The correlation of an even
number of coordinates and momenta is equal to the

4 See, e.g., H. Cramer, Mathematical Methods of Statistics
(Prmgeton University Press, Princeton, New Jersey, 1945),
p. 118.
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sum of products of pair correlations, the sum being
over all pairings.

For example,
(4:(1) (8 (B)Pm(ts)) = (0i(1) Gult) X q: (L) Pm(ts))
+ (0:(8) 01 () X ge(t)pm(ts))
Ll CHCY MONCAATACHE

APPENDIX 2: CORRELATIONS IN A SYSTEM
OF COUPLED QUANTUM OSCILLATORS
The system of oscillators is described by the
Hamiltonian

1 1
=9 Z P} + 2 Zk Akqiqe, (1)

where the operators ¢; and p; satisfy the commuta-
tion relations

[p:/yp] = 0. (2

The expectation value of any operator F with
respect to the canonical ensemble at temperature T'
is defined by

(F) = Tr {Fe

where the trace operation is in the space of the eigen-
functions of the Hamiltonian operator. We are
interested mainly in the case where the operator F
is a product of ¢’s and p’s.

As a first step in the evaluation of such traces,
consider the eigenvalues and eigenvectors of the
matrix A:

[97" il = thbs, (g;, @] =

Y/ Tr {7, ®3)

2 Ans" = Wi, @)
k
The eigenvectors are assumed normalized so that
EE(G)EI(') = 557’7 Zé(r) ;" = (5)
We now introduce the operators
= (2;1@.)—% ZESS)(IH -
0t = Zhe)™ 2 E(ps + iwg).

'I:O), QI) '
(6)

The commutation relations for these operators follow
from (2) and (5). We find
la,, a%] = &.., [a.,, a.] = [a%, a%] = 0. )

The inversion of (6) is readily accomplished using
the relations (5). We find
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9 =1 me( )(a, — a%),
p; = ZE“’( )(a. + a¥).

Inserting these expressions in the Hamiltonian (1)
and using the relations (4) and (5) we find

H = Zhw(aa + 9. ©

8)

The operator a*a, is the number operator for the sth
normal mode; its eigenvalues are the nonnegative
integers. The operator a, is the step-down (annihila-
tion) operator, and the operator a* is the step-up
(creation) operator; they have matrix elements only
between eigenstates of the number operator which
differ by unity."

The evaluation of the expectation value (3) when
F is a product of the a’s and a¥’s is straightforward.
Clearly, the only nonvanishing expectation values
are for products containing an equal number of a*’s
and a’s. The simplest of these are the pair expecta-
tion values. Thus

8, Tr {a*a,e™}/Tr ("}

S oo+ 1]

n=0
= 8"

Soo[ 0+ 3)]

n=0

- fen) -]

{a*a,) = }48..[coth hew,/2kT) — 1].

(a*a,) =

or
(10)
Using the commutation relation (7), we have

{a.a*) = }6,.[coth (Fw,/2kT) + 1]. (11)

The results for higher products are summarized by
the following rule: The expectation value of a product
of a’s and a*s is equal to the sum of products of
pair expectation values, the sum being over all
possible pairings with the order of each pair pre-
served.

For example:

(a%a.)a.0%) + (a*%a.)a.a*).

We do not prove this rule here, since the most con-
vincing demonstration is by example.
We turn now to the consideration of expectation

(a*a,a.0*) =

% These properties of the operators are discussed in many
textbooks on quantum mechanics. See, e.g., A. Messiah,
Quantum Mechanics (North-Holland Pubhshmg Company,
Amsterdam, 1961), Chap. 12.
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values of products of ¢’s and p’s. Because of the
linear relations (8) we have the same rule for these
expectations:

The expectation value of an odd number of ¢’s
and p’s vanishes. The expectation value of an even
number of ¢’s and p’s is equal to the sum of products
of pair expectation values, the sum being over all
pairings which preserve the order of the pair.

For example:

(:0m:00) = {@:0:Xpap2) + (a:PeX:90) + (2:0:Xq:94)-

The pair correlations are readily obtained from (10)
and (11), using (8). Thus

_h_w_l (2)

_y_h )
(g:ge) = Z% coth oo £V

Using (4) we see this can be written

{g:q0) = ﬁ; coth%t R (12)

Similarly, we find
pip) = H%hA* coth (hAi/ 2kT) ||, (13)
(gipw) = —(Diqe) = 3ihds. (14)

Consider now the time-dependent -correlation
functions in which the operators at time ¢ are
expressed in terms of the initial operators through the
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relations (4), considered here as formal solutions of
the Heisenberg equations of motion. Again we have
the rule that correlations of an odd number of
operators vanish while a correlation of an even
number of operators is equal to a sum of products of
pair correlations, the sum being over all pairings
which preserve the order of the pair. For example,

(9:(8) ()P (8) gm(#) = (gi(2) @:(8))P:(Es) gm(24))
+ (Qi(8)P:(2:) X qe(t2) gm(2s))
+ (¢:(t) gn(E) X (t)pi(5:)).
The pair correlations are
(APt + 7))
=||3hAY[coth (RAY/2kT) cos A*r + isin A'r]||;, (15)
(6:(Oq + )
=||3hA"}[coth (hA}/2KT) cos A}r -+ isin Al 7]|[,x, (16)
{(g: (Dt + 7))
= ||3h[— coth (RA}/2kT)sin A*r + ¢ cos Atr]||;. (17)

The derivation of these expressions goes exactly
as the derivation of the corresponding classical
correlations, obtained in Appendix 1, but using the
expressions (12), (13), and (14) for the initial
expectation values.
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A proof of the necessity of production processes in quantum field theory is carried out in the axio-~
matic framework. It is shown that a field theory that is assumed to have a nontrivial scattering
amplitude violates crossing symmetry, if production processes are absent. The proof is based on the
rigorous analytic properties of the scattering amplitude, particularly the analyticity in the invariant-
scattering variables s, ¥, and «. In the case of a scalar theory with pairing symmetry, the scattering
aroplitude is known to be analytic within the domain |stu| < 7168m®, except for the usual cuts.
Under the working assumption that production processes are null, it is shown that this domain can
be enlarged by applying the elastic unitarity conditions beyond the (usual) elastic region. The domain
is enlarged sufficiently to include the first Landau singularity of the absorptive part of the scattering
amplitude. This singularity is not symmetric in s and ¢ within the extended domain, and this is in-
compatible with the crossing symmetry of the scattering amplitude. In order to avoid a contradiction,
the discontinuity across this Landau singularity must be null. It follows that the scattering amplitude
must itself be null.

In the course of the proof it is shown that the conclusion is valid for a scattering amplitude satisfying

APRIL 1965

the requirements of an S-matrix theory embodied in the Mandelstam representation.

1. INTRODUCTION

HE production of one or more particles in the

collision of two elementary particles is a radical
departure from the classical conception of matter.
Originally anticipated in the early attempts to join
quantum mechanics with electrodynamics, produc-
tion processes have been encountered in virtually
all of the interactions of elementary particles. Fur-
thermore, production processes seem to follow quite
naturally in the theories which have been used to
describe the interactions of the elementary particles.
In these theories it is assumed that the elementary
particles can be described by quantized fields and,
furthermore, that their interactions are communi-
cated by particles, likewise described by quantized
fields, in a straightforward generalization of quantum
electrodynamics.

The precise relationship between production
processes and the basic elements of these field the-
ories are not entirely evident. For example, it is not
easy to give a reassuring proof of the necessity of
production processes in such theories. The perturba-
tive methods which characterize calculations in these
are ill suited to existence proofs. Not only is the
convergence of the perturbation expansions in ques-
tion (particularly in the case-of strong interactions)

* This research was supported at the Department of
Physics and Astronomy by the U. 8. Air Force Office of
Scientific Research and the National Science Foundation
through grants and fellowships, and at the Institute of Fluid
Dynamics and Applied Mathematics by the National Aero-
nautics and Space Administration.

t Present address.

but, if the perturbation series is examined term by
term, unusual cancellations among the terms may
occur and these are not easily ruled out.

To circumvent the many difficulties encountered
in the usual (quantum electrodynamics) formulation
of field theory, attention has been shifted to more
general investigations of field theories in which no
reference is made to specific interactions. This
approach involves a system of axioms which char-
acterizes those fundamental properties that all field
theories are expected to share.' The axiomatic
approach lends itself to existence theorems and,
since the equations of motion are not specified, the
theorems proved have considerable generality.

In this paper we give a proof of the necessity of
production processes in a relativistic quantum field
theory describing interacting particles. By inter-
acting we mean that the elastic scattering amplitude
is nonvanishing, and by relativistic quantum field
theory we mean the formal scheme embodied in the
axioms. The proof is given in detail for the case of
self-interacting neutral scalar bosons of mass m,
charge and spin zero. The extension of the proof to
particles with nonzero spin and isospin is nontrivial

1 The axiomatic systems we have in mind have been
proposed by H. Lehmann, K. Symanzik, and W. Zimmer-
mann; N. N. Bogoliubov and A. 8. Wightman. Our results
apply to the Wightman formulation in the striet sense only
after the axioms are suitably amended to admit the proof
of the usual dispersion relations, etec., for the scattering
amplitude. For a survey of the axiomatic systems see S. S.
Schweber, An Introduction to Relativistic Quantum Field

Theory (Row, Peterson, and Company, Evanston, Illinois,
1961), p. 721.
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and is not to be considered. The generalization to the
unequal mass case is less difficult, but is also not
considered here.”

A number of simplifying assumptions are made in
passing to avoid inessential complications which
would tend to obscure the more significant aspects
of the proof. Among these, we mention the simplify-
ing assumptions of the pairing symmetry [i.e., the
invariance of the field A (x) under the transformation
A(x) —» —A(z)]. Pairing symmetry is similar to
@ parity which occurs in the context of the inter-
actions of pions and, like G parity, rules out processes
involving an odd number of particles. In particular,
production processes, when they occur, have their
threshold at energy 4m in the center of momentum
coordinate system. The assumption of pairing sym-
metry enables us to avoid a degeneracy which occurs
in the equal-mass case only. The study of the equal-
mass case without pairing symmetry is similar to
the unequal-mass case and is also not considered
here.?

The proof of the necessity of production processes
in field theory is carried out ‘‘reductio ad absurdum.”
The proof is split into two major parts for reasons
of clarity of presentation and to permit the reader
who is more interested in S-matrix theory than field
theory to follow the main lines of reasoning. In the
first part we prove the necessity of production
processes in a relativistic scattering theory with a
nontrivial elastic scattering amplitude which satisfies
the analytic and crossing symmetry properties of
the Mandelstam representation. The proof in this
case includes most of the essential ideas and steps
which are needed to prove the necessity of production
in axiomatic field theory and it does avoid certain
complications in field theory which tend to obscure
the line of the proof. In the second part, the Mandels-
tam representation is replaced by the analytic
properties of the elastic scattering amplitude which
follow from the axioms, and the proof is modified
to suit the restricted analytic properties which
obtain.

Although words such as proof, theorem, etc. are
used, they should not be regarded as used in the
strong mathematical sense. Wherever possible,

2z For a discussion of the unequal mass case (when anomo-
lous thresholds do not occur) see, S. @. Aks, A Proof that
Scattering Implies Production in Quantum Field Theory
(Technical Report no. 345, Department of Physics and
Astronomy, University of Maryland College Park, Maryland,
1964), p. 39.

# The equal-mass case without pairing symmetry can be
treated like the equal-mass case with pairing symmetry by
subtracting the box diagram (with three-particle vertices)
from the scattering amplitude. For details see Ref. 2, p. 34.
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strict mathematical terminology and rigorous treat-
ment are dropped in favor of simple language which,
it is hoped, will give the arguments continuity and
clarity.

2. THE MANDELSTAM REPRESENTATION AND
THE ELASTIC UNITARITY CONDITION

In the following we are primarily concerned with
the elastic scattering amplitude T(psp:; p.p:) de-
scribing the elastic scattering of particles with
energy-momenta p, and p, before collision and p,
and p, after collision. The scattering amplitude is
related to the S-matrix through

(Q:‘:;u pw:) = (Q:‘::zn ;lxl;.) + 2¢T(psp4; plp?) (2 1)

The conservation of energy and momentum in
elastic collisions is deseribed by

T(psps; pip2)

= 8@, + p: — ps — p4)f'(p3p4; P1P2), 2.2)

where 8(z), whenever it appears, is to be taken as the
Dirac delta function appropriate to the argument;
in this case it is the four-dimensional delta function.
In the following we refer to both T(psp.; p:p:.) and
T(psps; pip.) as the elastic scattering amplitude;
no confusion should result.

As we have noted above, the proof of the necessity
of production processes in axiomatic field theory is
complicated. For this reason we (temporarily) intro-
duce the simplifying assumption that the elastic
scattering amplitude is the boundary value of a
function which has the analytic properties described
by the Mandelstam representation,*

T(pﬂh; pip2) = #(s, t),

where
86, D = 966, 4,
el LS
+ L f v f dw’ ——”%(u—“)_—;)
bl [ oG e

and s = (p, + p)% t = (ps — p)’, and u =

(ps — p1)°. We are using the Minowski quadratic

form in taking the square of the energy-momentum

4-vector (i.e., p° = p; — 7, §° = p} + i + p).

Since we are using p? = p* = p; = p? = m?, we have

s+t + u = 4m® and u is dependent on s and ¢.
+ 8. Mandelstam, Phys. Rev. 112, 1344 (1958).
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However, in some instances, it is useful to display
the u variable explicitly since ¢(s, ¢, u) has properties
readily described in terms of u [e.g., we shall see
that ¢(s, ¢, u) is symmetric under permutation of
s, t, uw]. When p, and p, are the energy-momenta of
the particles before collision (i.e., particles one and
two are incoming), we have s > 4m® and, ¢t < 0
and u < 0. Henceforth, we speak of this configura-
tion as the s channel.

In the s channel, s is the square of the energy in
the center-of-momentum coordinate system. If ¢ is
the scattering angle in this coordinate system, we
have

t = —23(1 — cos 9), (2.4a)
—27(1 + cos 6), (2.4b)

where G is the relative momentum of the incoming
particles, and,

u =

s = 4§ + 4m’. (2.4¢)

The ambiquity in taking the boundary value in (2.3)
is resolved by simply requiring that s tends to the
cut s > 4m’® (the s cut) from the upper half of the
complex s plane.

The amplitude relating to the S-matrix element
@, @ ) is given by

(D0 Do) = (Bizes Xiza) + 26T (Papa; Pips),
where
T(pa; Ppa) = 81 + ps — P2 — pad(s, 1, w),

and where s = (p, — 1)), t = (py + ps)® and u =
(ps — p1)°. The scattering amplitude relating to the
S-matrix element (%, %)) is found similarly.
When the particles with p, and p; are incoming, we
speak of scattering in the ¢ channel, and with p,
and p, incoming, the u channel. In each channel the
scattering amplitude is a boundary value (taken on
the upper edge of the s cut in the s channel; taken
on the upper edge of the ¢ cut in the ¢ channel; taken
on the upper edge of the u cut in the u channel) of
the analytic function ¢(s, {, u). The existence of a
single, although somewhat more complicated, ana-
lytie funetion whose boundary values along relevant
cuts determines the scattering amplitudes in the
various channels has been demonstrated in the con-
text of field theory. However, for the present we use
Mandelstam representation because of it’s convenient
domain of analyticity.

The proof of the necessity of production processes
is carried out ‘‘reductio ad absurdum,” all production
processes are assumed to be null, and, under this
working hypothesis, we show that ¢(s, f, w) is the
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null function. However, before applying the working
hypothesis we describe certain restrictions on
¢(s, ¢, u) that follow simply from the physical proper-
ties of the scattering amplitude. We know that the
s, t, and u channels differ only by the labeling of the
particles, hence, the related boundary values must
be equal. Furthermore, since the particles are bosons,
they obey Bose-Einstein statistics and the scatter-
ing amplitude is an even function of cos § when
expressed in center-of-momentum variables. It
follows that ¢(s, ¢, ) must be completely symmetric
under permutations of s, ¢, and u. This we call the
crossing symmetry; it occurs quite naturally for the
scattering amplitude in the context of the axiomatic
scheme. In order for ¢(s, t, u) to be totally symmetric,
the (density) functions p,{s, t), p.(t, u), and ps(u, s)
must all be equal [o(z, ¥) = pi(z, ¥) = p:(z, y) =
pa(z, )], and symmetric [o(z, y) = p(y, ¥)]. It is a
consequence of TCP invariance that ¢(s, t, u) is a
real analytic function, ¢*(s, {, u) = ¢(s*, ¢, u) for
t < 4m® and u < 4m’, and similarly for the other
variables. It follows that the density funection p(s, ?)
is real.

We note that ¢(s, t), as defined in (2.3), implies
boundedness properties at infinity which need not be
satisfied physically. It is usually assumed that the
scattering amplitude is bounded by a symmetric
polynomial, that is, it has the form (2.3) up to an
additive symmetric polynomial. We will not be
concerned with this polynomial (called a subtraction
term from the procedure used to compare it) and so
it is omitted. In field theory the polynomial bounded-
ness assumption is formally included in the technical
axioms.

By assumption, no processes involving an uneven
number of particles occur, therefore two-particle
scattering is elastic in the s (¢ or ) channel for
4m® < s < 16m’. In this range the scattering ampli-
tude satisfies the elastic unitarity condition. Under
the working assumption that no production processes
occur, the scattering amplitude then satisfies the
elastic unitarity condition for all s > 4m®. We find
this incompatible with the above described analytic
properties and crossing symmetry, so we must give
up the possibility that scattering can occur without
production. We have noted the relationship (2.1)
between S-matrix elements and the scattering ampli-
tude. This can be re-expressed as the operator rela-
tionship § = I + 2T, where I is the identity
operator, and the expectation values of S, for the
outgoing particles states, are the S-matrix elements.
When the incoming and outgoing particle states are
complete, the S-matrix transforms one orthonormal
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basis into another and is, therefore, a unitary opera-
tor® satisfying
88'=8'S =1
Coupling these operator equations, we obtain
@)7'T - T =TT =T'T.
In terms of the outgoing states this becomes
(o, @7 — TI0%) = (%55, T'TS.).

Introducing the complete set of outgoing states
between T'f and T in the right-hand side permits us
to rewrite this as

., @)7T —

l "l
out uue
- E Z (Qp.pu

m=0 phase epace

T'95%.)
km)(szout ckm) TQ:‘:;-))

where the double sum formally denotes that we are
splitting the right-hand side into contributions from
the vacuum state, one-particle states, two-particle
states, etc.® Since each of the terms on the right-hand
side contains an energy-momentum delta function,
the contributions from n = 0 and » = 1 are null.
In the elastic region the contributions for n > 3 also
vanish. The elastic region is either the interval
4m® < s < 16m® or, in the case where it is assumed
that no production occurs, s > 4m’. In the elastic
region we get

op, + p. — ps — po) Im (s, ¢, u)
Kike

= 8§, + P2 — P: — D) Z

phase space

¢*(87 t,,’ u,l)

X ¢(s, V', w')o(k, + k: — pip2),
where
t = (k, — Pl)z; u = (ky — pl)z,
' = (ps - kl)zy I = (P4 - kl)z'

On introducing the explicit summation over two-
particle phase space, this becomes

Im ¢(s, ¢, u)
= [ ar, [ ar.o)swt — mt)otaws — m?)

X ¢*(s, 1, u")e(s, ', w)oky + kr — po —

where the conservation delta functions which ocecur
on both sides are omitted, but should, nevertheless,
not be forgotten. The function 6(x) is the usual

D2),

§ We are assuming, of course, that no bound states occur.
¢ All contributions for m odd are already null as a con-
sequence of the pairing symmetry.
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characteristic function of the positive axis [0(z)=1,
z2>0and 0(z) =0,z < 0]

Some of the integrations can be carried out in the
center-of-momentum system, #, + 7, = 0. It is
convenient to use the center-of-momentum variables
s, G, and cos 6, and introduce cos 6, and cos 6, in a
similar way through ¢ = —2¢(1 — cos 6,) and
v’ = —2¢°(1 — cos 8,).

After performing integrations we can write the
elastic unitarity condition in terms of these vari-
able as

Im ¢(s, cos 6)
_ l _ . (8 _ 4m2)} +1
=3 6(s — 4m”) 5 '

-1

+1
dcosﬁlf d cos 6,
-1

8[k(cos 8, cos 8,, cos 6,)]
[k(cos 8, cos 6,, cos 6,)]}

X ¢(s; cos 8,)p*(s; cos 65),

where

k(cos 0, cos 6,, cos 8;) = 1 — cos® § — cos’6,

— cos® 6, + 2 cos 6 cos 6, cos 6, 2.5)

and
(s, t, u) = ¢(s; cos 6).

In much of our work we are concerned with the
analytic properties of (2.5) and we make use of the
ample literature on the subject, in particular, we
find the paper of Zimmermann of great value. Since
the imaginary part of the scattering amplitude has
analytic properties and, moreover, since the analytic
continuation of Im ¢(s; cos ) does not remain the
imaginary part of the scattering amplitude, we
follow the custom of denoting the analytic continua-
tion by A(s; cos 6), and call it the absorptive part.
Because of the extensive literature we shall but
quickly survey the properties of the absorptive part
limiting our attention to finding necessary conditions
for the existence of a singularity. The question of
the actual existence of a singularity is examined
closely in a relevant case in Sec. 4.

The singularities of the absorptive part with which
we are concerned are connected with the somewhat
more general expression

ve = [ [ anfte iy, @)

with V(z,) and W(z,) both analytic in domains which
include the integration intervals. If we replace
V(z1) and W(z,) by their Cauchy representations
on contours C; and C, (within their domains of

7 W. Zimmermann, Nuovo Cimento 21, 268 (1961).
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analyticity), after interchanging the order of inte-
grations, we obtain

—1
U@ =73 $ dd$ dat HEL 2 VEDWE, @)

where
1 2 +1 dZ
He o) = (o) [ -7
- 1 1
i ng 0[’6(2, zl) zz)] .
o 2 — 2 [k(z, 24, 2]

X (2.8)
If we take the positive root of [k(z, 2, 2,)]! when
—1 <z < +1, H(zl, #; 2) is analytic in 2] and 2}
in the complement of the cuts —1 < z{ < +1 and
—1 <2 < +1.

The 2z, and 2, integrations can be carried out.
First we note that the 2, integration covers the
interval on which k(z, 2,, 2,) is positive. The end-
points of this interval are 2% =2z, 4[(*—1)(Z2— 1)1},
the zeros of k(z, z,, 2,). Since the square root in the
denominator of (2.8) takes on opposite signs on
the upper and lower edges of the cut 2 < z < 27, we
can replace the z, integration by a contour integra-
tion around the cut (in the clockwise direction) and
take half of the result. Within this contour the inte-
grand is singular at z, = 2z} with residue

—T[_k(zy zlr 25)]*'
The z, integration then gives
H(Z{, 21,2; Z) = W[—IC(Z, Z{, 2";)]-i

2z — 2+ [—kz, 2], 20)]}
Z’Z; —Z - [_k(za Z:, z;)]i

X log (2.9)

The square roots are to be taken so that H (2}, 25; 2)
is singular in z when z = 22} + [(2/2 — 1)(2* — )]
The other zero of the square-root factor occurs
when the logarithm vanishes, and is, therefore,
removable. A function with this analyticity satisfies
the following representation (in the 2 variable):

H(z, 25,2 = —-27rf 4

21727+ (22 —1) (29’ ~1)} 2', -z
X (—1 42 + 20 + 2 — 2272))"F, (2.10)

the roots (2.2 — 1) and (22 — 1)} are taken as posi-
tive for z; and 25 real, and greater than one.

We do not anticipate being able to carry out the
integrations in Eq. (2.7), but, with what we already
know, we are able to determine certain analytic
properties of U(z) which follow from the analytic
properties of V(z,) and W(z,). A convenient way
to describe the connection between these functions
is to introduce the variables

STANLEY 6. AKS

’

oy = cosh* 2z}, a, = cosh™ 2, a; = cosh™ 2.

In terms of these variables the initial point of the
cut of H(z}, 25; 2) is given by

cosh ¢ = cosh (@; + ay). (2.11)

The function U(z) is analytic at all points inside
the curve z = cosh «, where o;(z]) and a,(2) run
over their contours. Let us suppose the contours
C, and C; are ellipses with foci =1 and semimajor
axis cosh A; and cosh A,. The equations for these
ellipses are cosh (A\; 4 7,,) and cosh (A, + %,,) with
u and g, real; the domain of analyticity in U(z)
includes the interior of the curve

cosh (A, 4+ Ay + 2y + 2ps).

This is the equation of an ellipse with foei +1 and
semimajor axis z,, where 2z, = cosh (A, + ;).

As we are frequently concerned with ellipses with
foci 1, it is convenient to denote them by E(a),
where a is the semimajor axis. Thus the ellipse with
foei &= 1 passing through the point z = cosh « is
E (cosh Re ).

Although (2.6) is modeled after the elastic uni-
tarity condition (2.5), there is one essential dif-
ference: the function ¢*(s; cos 6) is not obviously
analytic in cos 8 because of the complex conjugation;
hence, the analyticity of the absorptive part
A(s; cos 6) cannot be inferred as for U(z). This dif-
ficulty can be resolved since ¢(s; cos #) has been
shown® to have a square-root singularity in the s
variable at 4m®, and the analytic extension through
the cut s > 4m® onto the second sheet, denoted by
6® (s; cos 6), is, for s > 4m?, just ¢*(s; cos 6). Then
¢*(s; cos 6) can be replaced by ¢ (s; cos 8) in (2.5),
and the analyticity of A(s; cos 6), following from
the analyticity of ¢(s; cos 8) and ¢ (s; cos 8), can be
treated similar to V(2) in (2.5). Nevertheless, the
problem is formidable since the analytic extension of
¢(s; cos 8) to ¢ (s; cos 8) itself depends on the
elastic unitarity condition [specifically the analyticity
of A (s; cos 6)]. A full determination of the analyticity
of the absorptive part requires a step-by-step dis-
cussion. First, analyticity in A(s; cos ) must be
found in some domain, then the analyticity of
¢ (s; cos 6) following from it can be determined. By
using this analyticity of ¢'® (s; cos 6) in the elastic
unitarity condition, along with the analyticity of
o(s; cos ), further analyticity is found for A (s; cos 8).
Using this it follows that further analyticity in
¢ (s; cos 6) results, and, the argument can be re-
peated to further extend the analyticity of analyticity

z = @2.12)

8 W. Zimmermann, Nuovo Cimento 21, 268 (1961).
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of the absorptive part. This technique was intro-
duced by Mandelstam® and refined by Zimmermann.
In the following we make use of both versions.'

3. THE LANDAU SINGULARITIES AND THE
MANDELSTAM REPRESENTATION

We now survey Zimmermann’s work on the be-
havior of the scattering amplitude at s = 4m’ with
particular regard to the singularities on the second
sheet of the square root found there. The scattering
amplitude ¢(s; cos 6) determines the partial wave
amplitudes

+1
o.(s) = % f_l d cos 6P,(cos 6)¢(s; cos 6),

1=0,1,2,---;

the P;(cos 6) are Legendre polynomials. As we
have previously noted, ¢(s; cos ) is a real analytic
function, and, since the Legendre polynomials are
real-valued functions in the interval —1 < cos 6§ <
+1, it follows that ¢,(s) is a real analytic function,
hence, ¢%(s) = ¢:(s*). From (2.3) it follows that
each of the functions ¢,(s) is analytic in the s plane,
except for the cuts s < 0 and s > 4m®,

It is possible to reconstruct the scattering ampli-
tude ¢(s; cos 6) from the partial waves. To do this
we must first examine the analytic properties in the
cos 6 plane for fixed s not on the cut s < 0. The
scattering amplitude is analytic in the cos # plane
except for the images of the ¢ > 4m® and u > 4m®
cuts; the cuts start at cos § = +[1 + 8m*/(s—4m”)].
These points lie on the ellipse Ela,(s)], where

a(s) = [1 + 8m*(|s| + Re s)/|s — 4m?*|*]\.

Within this ellipse, the partial wave expansion

©

é(s; cos 6) = 2 (21 + 1)pi(s)P:(cos 6)
=0
converges uniformly and absolutely."
The two-particle unitarity condition can be re-
expressed as a condition on the partial wave ampli-
tude using'?

61 — 7= — Z: + 22:2:25)
(1 — 2 — 2 — 22 + 2z2.2,)}

= :’Er ; 2. + I)Pt(zx)Pt(zz)Pz(zs)-

¢ 8. Mandelstam, Nuovo Cimento 15, 658 (1960).

10 (To be published). The problem has recently been
studied by 8. @. Aks, R. Gilbert, and H. Howard using more
general theorems which may simplify the arguments involved.

1 E, T. Whittaker and G. N. Watson, Modern Physics
(The MacMillan Company, New York, 1948), p. 332.

12 The 6 function on the left-hand side serves to define the
range of validity of the expression.
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In the elastic region,
Im ¢y(s) = $l(s — 4m”)/s]* [gu(s)[".

It follows from this, and the reality property, that
each ¢;(s) can be extended through the cut s > 4m’
onto a second sheet, the singularity at s = 4m®
being of square-root type. The partial wavefunction
can be written as

éi(s) = Fi(s) + iml(s — 4"”2)/3]*(;1(3);

where both F,(s) and G;(s) are (real) analytic func-
tions in a neighborhood of s = 4m® The singular
part [(s — 4m®)/s]* is chosen positive on the upper
edge of the cut s > 4m” and is analytic in the inter-
vals between the left- and right-hand cuts. The
analytic extension to the second sheet at s = 4m’ is
denoted by ¢.® (s) and is given by

$:7(s) = Fi(s) — Yiml(s — 4m")/s]*Gi(s).

The functions F,(s) and G,(s) can have isolated
singularities but, since we know that ¢,(s) is analytic
in the complement of the cuts s < 0 and s > 4m?,
their singularities must compensate for each other
on the first sheet. On the second sheet they do not
compensate (according to the change of sign between
terms) and isolated sigularities may occur. However,
we neglect this possibility as their presence only
serves to complicate our work without materially
affecting the results.*’

We have already mentioned that the partial wave
expansion converges uniformly in the ellipse E[a, (s)].
The function F,(s) defines a similar expansion which
is also convergent in the ellipse Fla,(s)] for s off the
cut s < 0, however, the expansion

®

G(s; cos 6) = D (21 + 1)Gi(s)P,(cos 6)

=0
is analytic in a larger ellipse. We note that G,;(s) is,
up to the factor 1n[(s — 4m®)/s]}, equal to Im ¢,(s).
We noted above that the absorptive part of ¢(s; cos )
[the analytic extension of Im ¢(s; cos 6)] is analytic
in the ellipse E(2a® — 1) if the scattering amplitude
is analytic in the ellipse E(a).”* It follows that
G(s; cos 6) is analytic in the ellipse E(a,), where
a,(s) = 2a,(s)* — 1. Zimmermann gives a direct
proof of this in his paper. On summing the Legendre
series with coefficients ¢,(s) and ¢{* (s) we obtain

¢(s; cos 6) = F(s; cos 6)
+ Yx[(s — 4m®)/s]*G(s; cos 6), (3.1a)

13 A discussion of these singularities is given in R. Blanken-
beckler, M. L. Goldberger, 8. W. McDowell, and S. B.
Treiman, Phys. Rev. 122, 983 (1961).

1 This follows directly from (2.12) and the trigonometric

identity cosh 2N = 2 cosh®™ — 1.
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% (s; cos 6) = F(s; cos 0)
— Lix[(s — 4m?)/s]*G(s; cos 6), (3.1b)

for s not on the cut s < 0, and cos 6 in Efa,(s)]. Each
of the terms on the right-hand side of (3.1a) is
analytic in the s variable. ¢(s; cos 6) has a square-root
singularity at s = 4m® and ¢ (s; cos 6) is the ana-
Iytic continuation onto the second sheet. Similarly,
¢® (s; cos 0) is analytic in s and cos @ within a domain
described below. We can eliminate F(s; cos 6) from
the pair of equations (3.1) to get

¢¥(s; cos 6) = ¢(s; cos 6)
— Lix[(s — 4m*)/s]*G(s; cos 6). 3.2

It follows that ¢*(s; cos 6) has the singularities of
G(s; cos 6) as well as the s, ¢, and u cuts of ¢(s; cos ).
Hence, ¢ (s; cos ) is analytic within the ellipse
Ela,(s)} (s not on the cut s<0), except for the ¢ and

+1
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u cuts, which, in the cos ¢ plane, are given by

cos 6 = +[1 + 2t/(s — 4m®)], ¢ > 4m’.
In terms of the complex angle o = 78, this becomes
afs, t) = cosh™ [1 + 2t/(s — 4m2)],‘ t>4m’. (3.3)
The cut starts at
als) = afs, 4m®) = cosh™ [1 + 8m®/(s — 4m*)]. (3.4)

The semimajor axes a,(s) and a,(s) (defined above)
are given in terms of a(s), by a.(s) = cosh Re a(s),
a,(8) = cosh 2 Re a(s). We also have occasion to use
the semimajor axes a,(s) defined by

3.5

For s > 4m®, G(s; cos 6) is, up to a factor, the imagin-
ary (or absorptive) part of the scattering amplitude.
Therefore, in the elastic region we have

a.(s) = coshn Re afs).

8(1 — cos’ 8, — cog® 6, — cos’ 8 + 2 cos 6, cos 6, cos 6)

+1
G(s; cos 6) = —21;] d cos 6, d cos 6,
-1

Since ¢(s; cos 8,) and ¢*(s; cos §,) possess analytic
continuations into the s plane (except for the cut
s < 0), (3.6) is valid except on the cut s < 0. Equa-
tion (3.6) can be combined with (3.2) to provide a
linear integral equation in ¢® (s; cos 6).

From (3.6) we see that for each s (not on the cut
s < 0) G(s; cos 6) has the form of U(z) in (3.6).
Furthermore, ¢(s; cos 6) is an analytic within the
cos 9 plane, except for the ¢t and u cuts, and (for s
not on the cut s < 0) ¢ (s; cos 6) is analytic within
Ela,(s)], except for the ¢ and u cuts. The arguments
used in Sec. 2 on U(z) can be applied directly to
G(s; cos 9) to show that G(s; cos 6) is analytic within
Ela;(s)], except for two regions denoted by D3,
which are related to the ¢ and u cuts of ¢(s; cos 6;)
and ¢® (s; cos 6,) through the singularity combina-
tion formula (2.11). From (3.2) we find that
¢ (s; cos 8) is also analytic in E[a,(s)], but here the ¢
and u cuts as well as Dj must be excluded.

We show this as follows: Both ¢(s; cos 6,) and
¢ (s; cos 6,) are analytic in the ellipses E[a,(s)]
except for cuts in the variables cos 8, and cos 6,
(with initial points located at cosh a,, and cosh ay).
Using (2.11) the singularity points may be char-
acterized by =+ cosh [a(s, &) + a(s, )] and
cosh [@' -+ a(s, t)], where & = cosh™ cos 8,, with
cos §, running over the ellipse Ela.(s)]. The first
set of singularity points determines the domains

1 (1 — cos® 6, — cos® 8, — cos® 6 + 2 cos 6, cos 6, cos O)}

X ¢(s; cos 6) ¢P(s; cos 6,). (3.6)

D% and D7; the second set determines the ellipse
E[a,(s)]. The points =+ cosh [a(s, 4m®) + als, 4m®)]
of D% and D7 lie on Ela,(s)].

Similarly, ¢ (s; cos 6) can be extended into the
ellipse E{as(s)] if the points of D7 are excluded along
with the images of the ¢ and u cuts. Also, for cos 6
fixed within Elas;(s)] — D% — D73, ¢ (s; cos 6) is
analytic in s, except for the cuts s > 4m® and s < 0.

Zimmermann repeats the arguments again and
again to extend the functions G(s; cos 6) and
¢® (s; cos 6) into the ellipses Ela,(s)], Elas(s)], ete.
He uses the analyticity found in the previous step
to make the next step, and, in this manner, he finds
that ¢® (s; cos 6) is analytic in s and cos 6 except for:

(a) the normal cuts:

s> 4m?

2
¢ 2 4m } cos 0 = :I:(l +;_gtz'ﬂ7)’ t2> 4m2’ (37)
u > 4m’

(b) the cut s < 0;
(c) the domains D% given by
D7, = {cos 6| cos 6
= ==cosh [a(s, t,) + -+ + afs, t.)],
Hh>4am’,i=1,2, -+ ,n};
(d) the poles, which we are disregarding.
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The function G(s; cos 8) also has these singularities
except for the normal cuts.

We can now discuss the Landau singularities.”®
For s > 0, the domains reduce to cuts starting at
the points cos § = =cosh [na(s)] on the ellipses
E[a,(s)]. These are the points which we refer to as
Landau singularities, they lie on the Landau curves
as s varies. For n = 1 the Landau singularities
occur at the initial points of the ¢ and u cuts. For
n = 2,3, -+ trigonometric identities are used to
locate the Landau singularities in the ¢ plane. For
n = 2, we use cosh 2z = 2 cosh’ z — 1 and get

cos 0 = {1 + 32m’s/(s — 4m*)*}
which give (for the positive sign)
th(s) = 16m® + 64m*/(s — 4m®). 3.8

For the negative sign we obtain 3(s) =4m*—s—t%(s);
this correspondence between the singularities of both
signs is valid for all n.

The Landau singularity ¢3(s) is given by

th(s) = 36m® + 384m*/(s — 4m?)
1 1024m®/(s — 4m®’.  (3.9)

In general, t.(s) is given by a polynomial in
(s — 4m®) ™" with positive coefficients; the constant
term is 4n’m®. It follows that the Landau curves
are asymptotic to s = 4m® and ¢ = 4n’m®. Further-
more, for s > 4m’ the Landau curves lie on one
behind the other, that is, starting from s = 4m” one
reaches the curve ¢,,,(s) in the st plane only by
traversing the curve ¢5(s).

It is important to remember that the Landau
singularities are the initial points of the regions D
and that outside of these regions no other singulari-
ties occur. In the next section, we show that this
result is inconsistent with the requirements of
crossing symmetry and the analytic properties of
the Mandelstam representation. In Zimmermann’s
work, elastic unitarity is used in the interval 4m® <
s < 16m®, and, outside of this interval, other Landau
singularities due to the inelastic contributions to the
unitarity equation occur. These other singularities
fulfill the requirements of erossing symmetry.

Later we show that, in the somewhat more re-
stricted domain of analyticity which obtains for
the elastic scattering amplitude in axiomatic field
theory, the arguments used here (to determine the
Landau singularities) can be suitably modified.
There are, however, some new problems to be faced.

% The Landau singularities were first encountered in

perturbation theory and studied systematically in this
context by L. D. Landau, Nuclear Phys. 13, 181 (1959).
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4. THE NECESSITY OF PRODUCTION PROCESSES:
THE CASE OF THE MANDELSTAM
REPRESENTATION FOR EQUAL MASSES

The proof of the necessity of production processes
(when nontrivial elastic scattering occurs) is carried
out “‘reductio ad absurdum,” all production processes
are assumed null.'® It follows that all scattering must
be elastic, hence the elastic unitarity condition ob-
tains for all s > 4m”. It follows that for s > 4m’, the
function G(s; cos 8) is analytic in cos 6, except for
cuts whose initial points lie on the Landau curves.
We now show that this singularity structure is not
consistent with properties of the scattering ampli-
tude, particularly, the crossing symmetry, unless
the elastic scattering amplitude is also null.

The density function p(s, f) in (2.3) is given by

p(s, ) = lim {(s + de, ¢ + 1e) — ds — te, L + 1e)

— ¢(s + te, t — &) + (s — 1e, £ — te)} (4.1)

for s > 4m® and ¢ > 4m”. From (3.1) and the reality
of the scattering amplitude we have

B(s + de, 1) — ¢(s — 1¢, 1) = ¢(s + e, 1)
— ¢P(s + ¢, ©) = Yin[(s — 4m?)/s]'G(s + e, 1),

where G(s, t) is just G(s; cos 0) expressed in the s
and ¢t variables. No confusion should result from
this notation. It follows that

pls, O) = ¥inl(s — 4m®)/s]

X lim {G(s, t + t¢) — G(s, t — te)}.

e—0+

(4.2)

The density function is (up to a factor) the dis-
continuity of the absorptive part. We now examine
this discontinuity in detail. For s > 4m? and

am® < t < th(s) = 16m° + 64m*/(s — 4m®),

G(s, t) is analytic and the discontinuity vanishes.
It follows that p(s, t) vanishes for 4m® < t < t4(s).
See Fig. 1.

The density function p(s, ) is symmetric in s
and ¢, hence, the points at which p(s, ) vanishes
is likewise symmetric; see Fig. 1. However, the
region ¢ > t%(s) in which p(s, £) can be nonvanishing
is not symmetriec. In particular, p(s, ) vanishes in
the strip 4m* < ¢ < 16m® and therefore, by sym-
metry, in the strip 4m®> < s < 16m® as well. Thus
p(s, t) also vanishes for values of s and ¢ above the
Landau curve t3(s). Using the elastic unitarity
condition along with the analytic properties, we show

16 This condition is stronger than actually required for

the proof. All we use is the absence of production processes
below the second inelastic threshold at s = 36m.
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that the elastic scattering amplitude must be null
in this circumstance.

The essence of the proof is the demonstration that
the vanishing of p(s, t) for 4m® < s < 16m® implies
the absorptive part of the scattering amplitude is
null. Elastic unitarity is then used to show that the
scattering amplitude is also null. Since p(s, t) is
(up to a factor) the discontinuity of the absorptive
part, we will consider an expression for the dis-
continuity in order to determine the consequences
of the vanishing of p(s, ?).

Previously, we found that for s > 4m® both
#(s; cos 6) and ¢ (s; cos 6) are analytic except for
cuts starting at cos §=a,(s) = +[1+8m*/(s—4m")].
In what follows we only make use of their analyticity
within the ellipse Ela,(s) + 7], where a,(s) 4+ 7 <
a,(s); the ellipse must be just large enough for the
cuts to penetrate. Starting from (3.6), and using
(2.6) and (2.7), G(s; cos §) can be written as

G(s; cos 8) = —#95 dx,
[

X 95 dx, H(z,, x2; cos 0)p(s; z.)p ™ (s; 22), (4.3)
C

C is the boundary of Ela,(s) + 7] minus loops around
the cuts starting at +a,(s). The singularities of
G(s; cos 6) occur according to the formula cos 68 =
cosh(e; + @), where o, = 16,, a, = 16,, and cos 6,
and cos 6, vary over cut ellipses. The domain of
analyticity of G(s; cos 6) following from (4.3) con-
sists of an ellipse and that part of the D} cuts which
penetrate the ellipse. The ellipse is well within
Elas(s)], and, aside from the regions D3, we know it
is free of singularities. Hence, the only part of the
contours of (4.3) which contribute to the discon-
tinuity of G(s; cos 6) are the loops around these cuts.
The regular terms cancel on taking the discon-
tinuity and we do not retain them. The discontinuity
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of G(s; cos ) [in the vicinity of £}(s)] is, therefore, the
same as the discontinuity of C(s; cos ), where
1

4.3
4 a1 (s)

ay1(s)+r

C(s; cos 8) = dz,

ay(a)+r
X f dzx, H(z,, x»; cos 6)

1 (a)
X [¢s; 21 + 1) — o(s; 21 — 1e)]
X (6P (s; 22 + ie) — 6P (552, — 16)]. (4.4)

The integrations around —a,(s) are accounted for
by the extra factor of 2 in (4.4). The contributions
to (4.3) given by integrating z, around the cut
starting at a,(s), and z, around the cut starting at
—a,(s) (and conversely), are singular near t;(s)
and regular near t3(s) and, therefore, do not affect
the discontinuity near ¢%(s).

The discontinuities of ¢(s; z,) and ¢® (s; z.) ap-
pearing in (4.4) are simply the discontinuities across
the ¢ > 4m® cut transposed into angular variables.
They are given by

&(s; z1 + e) — o(s; 7, — Te)
= Jir{lz, — a(8))/[z — 11}’G"(z1; ) (4.50)
and
¢ (s; T2 + i) — ¢ (s; 2, — ie)
= Yir{[z, — a(®)])/[z: — 116" (zs; 5).

The function G*(x; s) is just the absorptive part in
the ¢ channel, expressed in terms of the s channel
center-of-momentum  variables.”” The factors
{2 — au(9)/[z: — 11} and {2, — ay(s))/[e2 — 11}
are equivalent to [(t — 4m®)/ t]! in these variables.

Introducing the discontinuities (4.5) into (4.4)
gives

(4.5b)

ai{e)+r1

1
C(s; cos ) = or )., dzx,
a {8)+r
X dz, H(z,, x,; cos 6)

6, (s)
X (Z—T:(Il—?)y@’(xl; s)(%f#)i(}”(%; s). (4.6)

The discontinuity of C(zx; cos 8) is determined by
replacing H(z,, .; cos 8) by its discontinuity, and
this we get directly from the integral representation
(2.10)

17 Here x = 1 + 2¢/(s — 4m?) and G¥(z; s) is not to be
confused with G(s; z).
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H(z,, x.; cos 8 + 1) — H(z,, 2;; cos 8 — 1¢)
0, cos 8 < z,x, + [(@} — D(f — DI

= <— 47*(—=1 + 2’ + 22 + cos 6 — 2z,z, cos 6)7},
cos 0 > zx, + (@ — i — DI

From this it follows that the integrations in (4.5)
which contribute to the discontinuity do not cover
the entire square a,(s) < 2, < a,(8) + 7, a,(s) <
z, < a,(s) 4+ r; for ¢ near t3(s), p(s, t) is given by

_m s — 4m2)i
p(s) t) =1 2 ( s
1 ay(8) +7 ay(8)+71 ..
Ximez [ dn [ dm (—aet)
T Ja,(a) a1 (a)

X [z — a®))/ [z — 136G (@15 9)
X {[xz - al(s)]/[x2 — I]PG“(xz;s)]

X (=1 + 27 + 2 + cos® § — 2x,r, cos 0)_*}

cos 6 > zx, + [ — D@2 — 1)),
1 4+ 2t/(s — 4m?).

cos 6 4.7)

Each of the terms in the integrand of (4.7) are
analytic within the domain of integration, hence
p(s, t) is analytic for t3(s) < t < 13(s).

We already noted that p(s, t) vanishes for 4m® <
s < 16m® and, since it is analytic, it must vanish
for ¢t < t3(s).

From (4.7) we see that the vanishing of p(s, 1)
implies that G'(z; s) = 0 within the region of inte-
gration. Now G'(z; s) is (up to a regular factor)
the absorptive part in the ¢ channel, £ runs along
the ¢t cut (t > 4m®), s is on the s cut (s > 4m®), and
these points are within the domain of analyticity
of the absorptive part. We note that the absorptive
part is not singular within Ela,(¢)] and these points
lie within this ellipse. Hence, the t-channel absorptive
part vanishes identically, and, since the {-channel
and s-channel absorptive parts are equal under the
transformation s <> ¢, A (s, cos ) vanishes for s>4m®.

We now use the elastic unitarity condition again
to show that the scattering amplitude is itself null
when the absorptive part vanishes. This is easily
seen using the partial wave form of the elastic
unitarity condition. The vanishing of the absorptive
part implies that each of the terms Im ¢;(s) vanishes,
hence ¢;(s) vanishes. It follows that ¢(s; cos 6)
vanishes. It vanishes throughout its domain of
analyticity, hence it is the null function. This is
what we set out to prove, the no-production assump-
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tion is incompatible with a nontrivial elastic scatter-
ing amplitude.

We have shown that elastic scattering and produc-
tion processes are strongly connected. In particular,
there can be no elastic scattering without production.
Since (full) unitarity connects both types of ampli-
tudes, this is not surprising. What is surprising is
that (full) unitarity was never used. We used the
elastic unitarity condition which involves only the
elastic scattering amplitude. However, the union
of the crossing symmetry and analyticity with the
elastic unitarity condition does provide a connection
between elastic unitarity and (full) unitarity. This
connection may be viewed as a constraint on the
(full) unitarity condition.

5. THE SCATTERING AMPLITUDE IN
FIELD THEORY

The above proof of the necessity of production
processes is now modified to account for the more
restricted analytic properties which follow from the
axioms of field theory. The basic organization of the
proof is retained but there are essential differences in
detail. The most significant modification is connected
with the fact that the domain of analyticity of the
scattering amplitude is so small that the Landau
curves (for s > 4m®) do not enter it. However,
under the assumption that production processes are
null, the domain can be enlarged using the elastic
unitarity condition beyond the usual elastic region.
Were it not for this enlargement, the proof would
fail.

The domain of analyticity of the scattering ampli-
tude is considered first. Although the actual domain
is at present unknown, Mandelstam has shown
that the elastic scattering amplitude ¢(s, ¢, u) is
analytic within the region |stu] < 7168m°, except
for the usual s, ¢, and u cuts starting at 4m®.'® Since
the detailed structure of the domain is so very
important for what is to come we shall survey
Mandelstam’s proof. This is also valuable prepara-
tion for handling some of the details of the proof.

Within the framework of axiomatic field theory,
Bogoluibov, Medvedev, and Polivanov'® have de-
rived dispersion relations for the scattering ampli-
tude. Thereafter, a number of simpler derivation
were given which extended the range of validity of
dispersion relations. The derivation of Lehmann® is

18 5 Mandelstam, Nuovo Cimento 15, 658 (1960).

1 N. N. Bogoluibov, B. V. Medvedev, and M. K. Poliv-
anov, Problems tn the Theory of Dispersion Relations (Institute
for Advanced Studies, Princeton, g\lew Jersey, 1959).

20 H. Lehman, Nuovo Cimento 10, 579 (1958), Suppl.
Nuovo Cimento 14 153 (1959).
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of particular interest for he provides not only the
dispersion relations, but in the course of his deriva-
tion he shows that the scattering amplitude and its
absorptive part have significant analyticity in the
momentum transfer variable. We start with Leh-
mann’s results and follow Mandelstam’s derivation.

For the momentum transfer variable ¢ (in the
s channel) fixed in the interval —28m® < { < 0, the
scattering amplitude is analytic in the complex s
plane, except for the cuts s < —¢ and 4m® < s. If
the seattering amplitude tends to zero sufficiently
rapidly for all contours such that {s] — =, the
Cauchy representation for this domain involves only
contributions from the cuts. The result is the disper-
sion relation

_ _1,[” , Im ¢(¢/, ¥)
QS(Sy t, u) = r o ds s — s
© [;
+_1.. u’w;—-Zszﬁt.
T Jime U - U

For s > 4m’, the imaginary part of the scattering
amplitude is itself an analytic function in the ¢
variable which we refer to as the absorptive part
A(s, 1), or A(s; cos 6), in terms of the center of
momentum variables. Lehmann has shown that
(for s > 4m®) A(s; cos ) is analytic in the cos 6 plane
within the ellipse E[24a/(s)* — 1], where

a’(s) = (1 + 64m*/sg*). (5.1

The ellipse E[2a’(s)® — 1] is known as the “large
Lehmann ellipse.”

It would appear that the analyticity of the absorp-
tive part could be combined with the above disper-
sion relation to provide a representation of the
seattering amplitude analytic over a domain in the
(complex) variables s and ¢{. However, it is easily
seen that, because the large Lehmann ellipse shrinks
as ¢ increases, there is no such domain. A simple
way out of the difficulty is to restrict attention to a
domain which shrinks in s as ¢ grows and, conversely,
so that arbitrarily large values of s do not oceur
in such a way that all analyticity in ¢ is lost. Further-
more, since the crossing symmetry plays a significant
part in what follows, the domain should be symmetric
in &, {, and u. It is also required that, other than the
usual s, £, and u cuts, no singularities occur within the
domain. In this respect the domain is like the domain
of the Mandelstam representation.

A domain satisfying these conditions has been
determined by 8. Mandelstam.”* He considers the
set of all points satisfying

# §, Mandelstam, Nuove Cimento 15, 658 (1960).
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lstul < R 6.2)

except for points on the cuts s > 4m®, ¢ > 4m®, and
u 2> 4m*.* It has the property of decreasing in the s
dimension as ¢ increases, and, conversely. It is also a
symmetric domain. Mandelstam has determined a
value of R in (5.1) such that the scattering amplitude
may be analytically econtinued into the domain. In
terms of the s-channel eenter-of-momentum vari-
ables, (5.2) becomes

4G% |1 — cos® 6] < R. (5.3)
The points satisfying (5.3) also satisfy
cos 8 = (1 + {/43%), (5.4)

where |¢| < R. From this we see that, for s > 4m®,
a domain of the form of (5.1) is composed of two
parts, one part about cos ¢ = 1, and the other part
about cos § = —1. However, for sufficiently small
values of s > 4m® the parts overlap and the domain
contains the entire interval —1 < cos 8 < +1. We
also note that the domain shrinks rapidly as s grows.
Comparison with (5.1) shows that the domain shrinks
by the factor 1/s faster than a’(s). The shrinkage of
the domain should get us around the difficulty
mentioned above. Since (5.2) is symmetrie, this is
also the case in the ¢ and » channels when examined
in terms of their center-of-momentum variables.
The value of B is determined from the requirement
that the projection of the domain |stu| < R on the
¢t plane (or cos 8 plane) is to be contained within the
large Lehmann ellipse. A point satisfying (5.2), and
hence (5.4), lies within this ellipse if the sum of the
distances from the point to each of the foci is less
than twice the semimajor axis. This sum is given by

§ = |1 + /40 — 1]
+ =1+ /4 + 1. (5.5)

It is clear that $ is independent of the root chosen
in (54). fwelety = (1 + ¢/4¢%)}, Eq. (5.6) be-
comes

§=[1+yl+ 1 -yl
and it follows that
S=2+2"+21 -9y
On returning to the original variables,
$8 =2+ 21+ /4§ + 2 [¢/47%]. (5.6)
If we denote ¢ by ¢ = re* with » > 0, we find that $*

22 This choice of domain is primarily dictated by the fact
that it works. Another possibility is [sf] < R but for our
purposes this is less satisfactory.
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takes on its maximum value for k = 0, that is, for
¢ > 0. Furthermore, the larger r is, the larger $° and,
hence, 8 is. We conclude from this that all points of
the form (5.4) lie within the large Lehmann ellipse,
if the point with { = R lies within this ellipse.
Another way of saying this is: All of the points of
the form (5.4) lie within the ellipse if the largest real
point (in the cos 8 plane) is within the ellipse.

The maximum value of R is found by requiring
that for each s > 4m? the point with { = R lies
within the large Lehmann ellipse corresponding to
that value of s. Hence, we require (for s > 4m?)

4¢’s{l — [2a’(s)’ — 1]’} = R(s) > R,

where a’(s) is given by (5.1). On introducing (5.1),
this becomes

256m’[s — 4m' + 256m*/s] = R(s) > R. (5.7)

The function R(s) takes on its minimum value in
the range 4m* < s when s = 16m®. Placing s = 16
in (5.7), we find that the minimum of R(s) is 7168m°.
We take 7168m° as the value of R, it is the largest
value satisfying the requirements set above.

Since the domain [stu] < 7168m° is symmetric it
follows immediately that the projection in the ¢
and u channels are also contained within the cor-
responding large Lehmann ellipses.

We have still to show that it is possible to extend
the scattering amplitude simultaneously in s and ¢
into this domain. The domain determined by |stu| <
7168m® is bounded by a segment of an analytic
hypersurface and the s, £, and u cuts. The cuts are
also segments of analytic hypersurfaces. Using s
formula due to Bergmann and Weil,® it is possible
to give an integral representation for the most
general function analytic within a domain whose
boundary is composed of analytic hypersurfaces. The
Bergmann~Weil representation involves integration
over the intersections of these hypersurfaces, that is,
over a domain of lower dimension than the boundary
of the domain but contained in the boundary. In the
case where the number of analytic hypersurfaces
which compose the boundary equals the number of
independent complex variables the Bergmann—Weil
representation is little more than a repeated applica-
tion of the Cauchy representation in each variable.

In this representation it is most convenient to use
the variables s and ¢, instead of s and ¢, since the
boundary of the domain is best described in terms
of {. However, ¢ (or cos 6) is not a single-valued

23 For a concise survey of the Bergmann and Weil formulas
see F. Sommer, Math. Ann. 125, 172 (1952).
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function of ¢ and this change of variable would not
be analytic. Actually, there is no difficulty at this
point as we know that the scattering amplitude is
an even function of cos #. Since it is analytic in cos 6,
it must be an analytic function of cos® 8. With cos’ 8
as the variable, there is no sign ambiquity, and the
change of coordinates is analytic. In terms of { =
—stu, the scattering amplitude has the representa-
tion

¢(3; t u)

RN N 0
2’y Am? ds ﬁ;'|=71esm- ds (S’ - 3)(§', -0
Lo ,_ A5 ¢

+ o2t am? dt ~/;{'|=7168m' % (t/ - t)(j" -5

L ,_ AW )
* 2’8 /;m’ e -/;r’l-7168m' o W - —¢)’

where A(s; ¢) is the absorptive part in the s channel
(similarly for the ¢ and u channels) in terms of s
and {. We note that the absorptive part is analytic
in ¢, for all s > 4m? since the projection of
{lt] < 7168m°} on the cos 6 plane was chosen to lie
within the large Lehmann ellipse. Furthermore, the
domain of analyticity of the absorptive part does
not shrink with increasing s, as would be the case
with the straightforward use of the large Lehmann
ellipse. The difficulty connected with the shrinkage
of the large Lehmann ellipse is thus circumvented.
The proof that ¢(s, ¢, u) actually satisfies (5.8)
is quite simple. The function ¢(s, ¢, u) given by (5.8)
and all its derivatives in ¢, at { = 0, agree with the
forward scattering dispersion relations and the
forward scattering dispersion relations for the various
derivatives of the secattering amplitude found by
Symanzik.”* It follows that (5.8) is the desired an-
alytie continuation of the elastic scattering amplitude.
The analytic representation (5.8) replaces the
Mandelstam representation (2.3) in field theory.
The proof of the necessity of production must be
modified to suit this representation. However, as we
shall see, the representation will itself require change
in the process. In particular, the Landau curves
which were so important to the previous case do not
even enter the domain |stu] < 7168m® for s > 4m’.
As a result, (5.8) does not have contributions from
the double discontinuity functions p(s, t), as in the
case of the Mandelstam representation. We return
to this question after we have examined the Landau
singularities as they occur in field theory.

(5.8)

# K. Symanzik, Phys. Rev. 105, 743 (1957).
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6. THE LANDAU SINGULARITIES IN
FIELD THEORY

The field-theoretic scattering amplitude can be
analytically continued onto the second sheet of the
square-root branch point at s = 4m”® using essen-
tially the same method as previously used in connec-
tion with the Mandelstam representation. As before,
we introduce the partial wave amplitudes

oi(s) = % f_l d cos 6P, (cos )¢(s; cos 6);

1=0,1,2---, (6.1

but, in the present case, ¢:(s) is analytic in s within
the domain determined by

|s(s — 4m®)| < 4R = 4(7168m"), (6.2)
except for the cuts 4m* < sand — < s < 0.

The elastic unitarity co_ndition (in partial wave
form) and the reality of the scattering amplitude
are used to define the merimorphic functions F,(s),

and G,(s), satisfying
&i(s) = F,(s) + in/4[(s — 4m?)/s]*G,(s),

for s fulfilling (6.2). The singularities of F,(s) are
canceled by the G,(s) term and, as before, we dis-
regard these singularities as inessential to the proof.
We can, therefore, regard

$i7(s) = Fi(s) — in/4[(s ~ 4m")/s]'G.(s),

the analytic extension of ¢,(s) to the second sheet,
as analytic, for s satisfying (6.2), and off the cut
s < 0.

Summation of the partial wave amplitudes ¢,(s),
¢ (s), and G,(s), presents more difficulty than was
encountered with the Mandelstam representation.
For s fixed, the partial wave series converges uni-
formly and absolutely to

¢(s; cos §) = ;) @1+ Deu(s)Pi(cos 6),  (6.3)
within the largest ellipse with foci &=1 which can
be fitted into the domain of analyticity of ¢(s; cos 6).
We seek that ellipse.

Previously, we noted that the projection (for s
fixed) satisfying |stu| < R could be fitted within an
ellipse in the cos # variable (with foei ==1) if the
largest (real) value of the projection was contained
within the ellipse. In this case we are interested in
the largest ellipse which can be fitted into the projec-
tion. The function $ given by (5.5) provides a cri-
terion for this case also. The projection contains an
ellipse with foci +1 if the largest pure imaginary
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value of cos 8 satisfying |stu| < R is greater than the
magnitude of the semiminor axis of the ellipse. From
(5.6) we see that § takes on its minimum value for
k = =, and the criterion follows from the usual argu-
ments concerning the sum of the distances from a
point on an ellipse to the foci. The semiminor axis
of an ellipse E[d,(s)] is located at

cos 0 = i[d,(s)’ — 1]%.
Using this with the eriterion, we obtain
a(s) = RY/2 |@st. (6.4)

For large values of |s| we see that 4,(s) < 1, and it
follows that, for |s(s — 4m®)| > 4R, it is not possible
to fit an ellipse within the region given by |stu| < R.
Hence, a nonvanishing ellipse can be found only for
values of s satisfying (6.2), the condition for ana-
lyticity of partial wave amplitudes as functions of
the s variable.

We have noted that the region |stu| < R is com-
posed of & component about cos § = 1, and another
about cos § = —1, and that the parts do not over-
lap for large |s]. Our result is a symptom of this
disjointness of the components of the projection of
the |stu| < R.

On the other hand, when |s| is sufficiently small,
the ellipse may include parts of the ¢ and u cuts;
hence ¢(s; cos 6) is not analytic throughout E[g,(s)].
If we denote the initial points of the ¢ and u cuts
(in the cos 6 plane) by Za(s), we have ¢(s; cos 6)
analytic within E[a,(s)], where a,(s) =cosh Re a(s).
The partial wave series (6.3) converges uniformly
and absolutely within E[4;(s)] when the cuts do not
penetrate the ellipse. When they do, convergence is
restricted to the ellipse Ela,(s)].

For s satisfying (6.2), and not on the cut s < 0,
the Legendre coeflicients F,(s) can be summed to
the function F(s; cos 6), where

F(s; cos §) = i (21 + D)F,(s)P,(cos 6),

within the relevant ellipse E[d,(s)], or E[a.(s)]. For s
satisfying (6.2), and not on the cut s < 0, the fune-
tion G(s; cos ), given by

Gs; cos 0) = 3 (21 + 1)G4(8)Ps(cos 0),

converges uniformly and absolutely within the
ellipse E[d,(s)], where d,(s) = 24.(s)> — 1, when
¢(s; cos 0) converges within E[d, (s)]. When ¢(s; cos 6)
converges within FEla;(s)], the series converges
within E[a,(s)], where a,(s) = 2a,(s)> — 1. The
relationship between the ellipses El[d,(s)], and
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E[d,(s)], and Ela;(s)], and E[a,(s)], is once again a
consequence of the elastic unitarity condition.

The function F,(s) can be removed from the
expressions for ¢,(s) and ¢{> (s) to give

¢®(s; cos ) = ¢(s; cos 6)

— Linl(s — 4m®)/s]*G(s; cos 6). (6.5)

Since this result depends on the elastic unitarity
condition it is at first valid only for s in the elastic
region. However, as both terms on the right-hand
side are analytic for s satisfying (6.2), except for
the cuts s < 0 and s > 4m’, and for cos 0 within the
intersection of the domain |stu| < R with the rele-
vant ellipse E[d,(s)] or Ela.(s)], Eq. (6.5) is valid
throughout this region. The function ¢* (s; cosf)
is, therefore, the analytic continuation of the scatter-
ing amplitude onto the second sheet of the square-
root singularity at s = 4m®. It has the cut — o <
s < 0, as well as the s, ¢, and u cuts.

The domain of analyticity we have found for
‘%' (s; cos 6) is more complicated than was the case
for the Mandelstam representation. For |s| suf-
ficiently small (off the cut s < 0), the ¢ and u cuts
penetrate so far into the ellipse E[d,(s)] that the
ellipse Ela,(s)] itself is contained within Eld,(s)].
We can also analytically continue G(s; cos 6) into
the ellipse Elas(s)], if Elas(s)] is contained within
E[3,(s)]. The method is the same as was used in
connection with the Mandelstam representation.
Similarly, the regions D* given by (3.7) may contain
singularities of G(s; cos ) within E[as(s)]. If not all
of Ela;(s)] is contained within E[d,(s)], the continua-
tion stops at E[d(s)]; the parts of the regions D3
which lie within E[é,(s)] may contain singularities
of G(s; cos 6).

If E[as(s)] is contained within E[d, (s)], this method
of analytic extension can be used again to continue
into Ela,(s)], if Elas(s)] is contained within E[d,(s)].
The regions D% and D% must be removed from
Ela.(s)] as G(s; cos 6) may be singular within these
regions. If Ela,(s)] is not entirely contained within
El[d,(s)], the continuation process ends at E[d.(s)]
from which D3 and D3 must be removed. For any
value of s satisfying (6.2), the extension process stops
after a finite number of steps. However, if we take |s]
sufficiently small we can reach any ellipse E[a.(s)]
and have a part of Di as a (potential) singular
region for the function G(s; cos 6).

It follows that ¢®’(s; cos ) is analytic within
E[4,(s)] for s satisfying (6.2), except for the s, ¢, and
u cuts, the cut — » < s < 0, and those parts of the
regions D% which fall within E[d,(s)]. The domain of
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analyticity of G(s; cos 6) can be extended beyond
E[4,(s)], but that is left for later.

The initial points of the regions D}, determine the
Landau curves. Hence, it is possible to reach any
of the Landau singularities by taking |s| sufficiently
small. However, when s > 4m? the Landau curves
do not enter the domain®® of analyticity of ¢(s; cos ).
This follows from the fact that E[d(s)] is contained
within the domain determined by |[stu| < R which
is, for s > 4m’®, itself contained within the large
Lehmann ellipse for that value of s. The Landau
singularities do not occur within the large Lehmann
ellipse as the absorptive part, and, hence G(s; cos 8),
is analytic within this ellipse.

The Landau curves for s > 4m® played a central
role in the proof using the Mandelstam representa-
tion; however, in the present case we find that the
domain of analyticity is too small to reach these
curves, and the proof will not work in this case,
unless the domain |stu| < R with R = 7168m° can
be enlarged to include the relevant parts of the
Landau curves. In the following we use the elastic
unitarity condition to enlarge the domain. However,
we first take a short look at the Landau curve for
n = 2, given by the equation (s — 4m®)(t — 4m®) =
64m*, to get an idea of just how much we have to
enlarge the domain. The values of £ = |stu| on the

curve (s — 4m®)(t — 4m®) = 64m* are given by
_ . 64m’ )( > 64m* )
B —s(lﬁm +op\2m s s

For s > 4m®, we note some values of B: for s = 4m?,
R = «;fors = 6m®, B exceeds 12500m°; for s = 8m’,
R = 9216m®;for s = 10m*, B = 8720m°; for s=12m?,
R = 9216m°; for s > 12m’, R becomes still greater.
As expected each of these values exceeds 7168m°.
We conclude that B must be enlarged from 7168m°
to a value in excess of 8720m°, if a proof similar to
the proof used in connection with the Mandelstam
representation is to be used.

7. THE NECESSITY OF PRODUCTION PROCESSES:
THE CASE OF FIELD THEORY FOR
EQUAL MASSES

Mandelstam® has given a method for enlarging
the domain of analyticity of the scattering amplitude
using the elastic unitarity condition in somewhat
the same way that Zimmermann used it to study
the Landau singularities. The proof that scattering

% By domain we mean the domain before the cuts are
removed.

2 8. Mandelstam, Nuovo Cimento 15, 658 (1960). Mandel-
stam’s method does not work in this case when the elastic
unitarity condition obtains only within the elastic interval
am? < s < 16m2
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implies production is carried out ‘‘reduciio ad ab-
surdum” starting with the working assumption
that production processes are null. We are then
free to apply the elastic unitarity condition beyond
the usual elastic region 4m®* < s < 16m’. The domain
of analyticity can then be enlarged sufficiently for
the proof to be carried out.

We start the enlargement process by noting that
for s > 4m® (but sufficiently small) the scattering
amplitude is analytic within an ellipse which is
larger than the small Lehmann ellipse for that value
of s. It then follows from the elastic unitarity condi-
tion that the absorptive part is analytic in an ellipse
which is larger than the large Lehmann ellipse.
Since the value of R is determined by the domain of
analyticity of the absorptive part, it may be that B
can be enlarged using the analyticity in the larger
ellipse. We found that B = 7168m® was determined
at s = 16m?; that is, the boundary of the projection
of the domain determined by [stu| < 7168m°® touches
the large Lehman ellipse at s = 16m’. If, by using
the elastic unitarity condition for s about 16m°, the
absorptive part is analytic in a larger ellipse, R can be
increased. However, if the elastic unitarity condition
is restricted to the interval 4m* < s < 16m’ the
method does not work, since we could not claim that
the absorptive part is analytic beyond the large
Lehmann ellipse. As we are free to use the elastic
unitarity condition for s > 16m?® and since it follows
from this that the absorptive part is analytic beyond
the large Lehmann ellipse for s about 16m°, we can
use Mandelstam’s method even though it does not
apply in the usual case.

We found above that the ellipse E(d,(s)), with s
satisfying (6.2), can be fitted into the projection of
the domain determined by |stu| < 7168m°. Both
#(s; cos 6) and ¢ (s; cos ) are analytic within this
ellipse, for s > 4m® (but sufficiently small), except
for the images of the ¢ and u cuts. For s > 4m® and
sufficiently large, the cuts no longer enter the ellipse
E{é,(s)] since, for increasing s, the ellipse shrinks
faster than the initial points of the cuts move in
toward the foci. In this case the absorptive part
is analytic within E[d,(s)], where d(s) = 24,(s)* — 1.
When the initial points of the t and » cuts penetrate
El[4,(s)] the absorptive part is analytic within the
ellipse E[d,(s)], where

ay(s) = cosh [als) + a()], (7.1)

and where a(s) = cosh™ a,(s), and &(s) = cosh™
4,(s), except for cuts with initial points =a,(s).
Equation (7.1) follows from (2.12) using ¢(s; cos 6)
analytic within E[a,(s)], and ¢ (s; cos 8) analytic
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within E[d, (s)], in consequence of the elastic unitarity
condition.

We use the usual trigonometric identities to
rewrite (7.1) as

@y(s) = 4:()a:(s) + (4] — 11Mau(s)® — 118 (7.2)

The absorptive part is analytic within E[d.(s)], or
Eld,(s)], whichever is relevant, except for the cuts
beginning at =a.(s) and running off to . For
each value s > 4m’ one of the ellipses E[a,(s)],
Eld,(s)], or E[d,(s)], is used to determine R. The
largest of the ellipses is used, providing, of course,
that it is relevant. The large Lehmann ellipse is
always relevant, but for some values of s, particularly
for s not too much greater than 4m® El[d,(s)] and
E[d,(s)] may be larger.

We proceed as before by fitting the projections
of the domain determined by |siu] < R into these
ellipses for s > 4m®. We remember that the largest
domain of this form (that can be projected into an
ellipse with foei 4-1) is determined by requiring that
the largest real value of the domain occurs at the
endpoint of the semimajor axis of the ellipse. Hence
R, in the case where E[@,(s)] is relevant, is dominated
by R.(s), which is given by

Bi(s) = 47's |1 — a,(s)*]. (7.3)
Placing (7.2) into (7.3) gives
B\ = 4¢'s{a,9)ane)’ — 17
+ a@)ld(* — 117 (7.4)

Since a,(s) = 1 4 2m?/¢%, and d,(s) = 16-7im*/§s},
R.(s) is given by

_ | ea. (™ mf)*
E,(s) [64 7 ( 7
2 —4 4}

+ (1 42 1’;—2)(7168 — i%f) }m“.
We note that £,(s) is monotonically decreasing
for 4m* < s < 7168m°/4¢". The last restriction is
just (6.2), the condition that must be satisfied if an
ellipse is to be fitted into the projection of the domain
determined by |stu] < 7168m°.

The ellipse E[d,(s)] is relevant up to s = 28m”.
By simple computation at s = 28m? we find
4:(28m2) = 1.335 and a,(28m?) = 1.333; the initial
points of the cuts just penetrate the ellipse
E[d,(28m™)], and it follows that E[d,(28m”)] is still
relevant for the absorptive part. For s > 28m’
(actually a value slightly greater than 28m®), the
ellipse E[4,(s)] is relevant and E[d,(s)] is not. We
note that E[d@.(28m?)] is larger than Ela,(28m?)].

(7.5)
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Furthermore, the ellipse E[d,(30m?)] is larger than
the large Lehmann ellipse at s = 30m’. In the inter-
val 28m* < s < 30m?, R is dominated by R, (s) which
is given by

B.(s) = 43's |1 — 4,(5)*|. (7.6)
Using d,(s) = 24,(s)® — 1, we find
B.(s) = 163 |d.(s)* — d.(s)*|. (7.7)
Placing 4,(s) = 16-7'm?/§’s* into (7.7) gives

B.(s) = 4(7168)m® |7168m°/4q's — 1|.  (7.8)
The new value of B is dominated by E,(s) where

R.(s) = max {R(s); B.(s)}, 4m® <s<3§  (7.9a)
R.(s) = max {R(s); B.(s)}, §<s<s§, (7.9b)
R.(s) = R(s), § <s, (7.9¢)

and R(s) is given by (5.7). The value of § is deter-
mined by 4,(3) = a(3), and, as we have seen, § is
slightly greater than 28m® The value of s at which
the ellipse E[d.(s)] becomes smaller than the large
Lehmann ellipse is denoted by § and it is greater
than 30m’.

The minimum value of R,(s) is not found at a
stationary point, as was previously the case. How-
ever, we do know that B,(s) and R,(s) are mono-
tonically decreasing in the interval 4m® < s <
7168°/4¢*, and, on the other hand, R(s) is mono-
tonically increasing for s > 16m®. From this it
follows that B = R,(5), where § is the value at which
R,(s) = R(s) for all s > 3. Of course, we can use a
smaller value for B; for example, the value of R(s)
at some s < 3. At s = 30m?®, R(30m®) < R < R,(s)
for all s > 4m®. Calculation gives R(30m®) = 8840m°,
and R,(30m*) = 11900m°. Hence, we can use 8840m°
in place of 7168m°. We note that the new value
exceeds 8720m°, hence, the Landau singularity ¢%(s)
will enter the domaln determined by [stu| < 8840m°
for s in the range s > 4m®,

We could use this domain as the starting point
for repeating the extension process. An even larger
ellipse can be fitted into this domain, however, the
present domain is satisfactory for completing the
proof that scattering implies production. We note
that the value 8840m? is of no significance other than
that it exceeds 8720m°.

The scattering amplitude has a Bergmann—Weil
representation in the new domain. It is not sufficient
to replace 7168m® by 8840m°® in (5.8) since the
absorptive part A(s'; ¢) is smgular on the Landau
curve t5(s) within ];] 8840m°. The contributions
from contours around the cuts of the absorptive
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part must be included in (5.8). The cuts begin at
+a,(s) [—a.(s)] and run off to the right (and left).
We include contributions only from these parts of
the cut which enter |¢| = 8840m°®. The contributions
from the upper and lower sides of the cuts can be
combined, in the usual way, in the form of the
discontinuity across the cuts. Hence we write

ol w) = _f @’ f W p(g(tt’)— D)
+ v fw du'?—_—_’%'—&%)m
+ [ aw f ds’ “‘“%(’8—7)

27r 7 fm- fu | =8840m® ¢ GT—Z_(SS)(LI;,)-_Q
o [ e W T
b f4 :’du’ ﬁ ;r.-ss40m-df'(u_’§(ul)’(i§-%6’ (7.10)

where p(s’, ') is the double discontinuity of the
seattering amplitude within the domain, and A (s'; ')
is the absorptive part as described previously. The
functions p(s’, '), (', u’), and p(u’, &) are all equal
and symmetric since ¢(s, £, u) is totally symmetrie.
The integrations over these functions vanish over
part of the indicated regions as we see below. The
situation at this point is quite similar to the situation
we started with in the case of the Mandelstam
representation. From this point the proof goes the
same way.

We are now ready to complete the proof following
the arguments used in Sec. 3; we borrow results from
there freely. The essential difference between our
present situation, and that encountered with the
Mandelstam representation, is the presence of .the
boundary |stu| = 8840m°. Nevertheless, within this
boundary we find the same incompatibility of cross-
ing symmetry and the two-particle unitarity condi-
tion on which the previous proof was based.

Under the working assumption that production
process are null, we can use the elastic unitarity
condition for all s > 4m®. Actually, we need it only
for sbelow thesecond production threshold (s = 36m®),
but, since our results are not essentially strengthened
by working with this weaker condition, we do not
stress this point. With the elastic unitarity condi-
tion valid beyond s = 16m?, the partial wave ampli-
tudes (6.1) are defined for s satisfying (6.2) with
R = 8840m°. It follows that the analytic continua-
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tion ¢ (s; cos 6) is defined over a larger region, and
the continuation is the cos 6 variable can be pushed
further. The function G(s; cos ) is analytic within
an ellipse, which for each s > 4m® contains the
entire domain |stu| < 8840m°, except for the regions
of singularities D3 given by (3.8), some of which may
oceur within the ellipse. Only points of D% fall
within [stu] = 8840m, the other singularities of the
absorptive part occur outside the enlarged domain.
The question of whether further enlargement of the
domain will enable other singularities of the absorp-
tive part to enter the domain of analyticity of the
scattering amplitude does not concern us. The singu-
larities already present are incompatible with the
crossing symmetry.

The double density function p(s, £) of (7.10) is
given by (4.1) at points within the domain deter-
mined by |stu| < 8840m°®. For such points (4.2) is
also valid, hence p(s, f) is proportional to the dis-
continuity of the absorptive part. For s > 4m® and
within the domain, the absorptive part can be
singular only within the regions D% which, in this
case, reduce to cuts in the cos 8 plane.

Wherever the absorptive part is analytic, the
double density function vanishes. It follows that
p(s, t) vanishes for 4m® < ¢ < t4(s), where t}(s) =
16m® + 64m*/(s — 4m®). We remember that t5(s)
is the first Landau singularity occurring for s > 4m®
and ¢ > 4m® Its points correspond to the initial
points of the cut D7 as s varies.

STANLEY 0.

AKS

The Landau curve t%(s) is not symmetric in s
and f. It follows that the (potential) support [i.e.,
the region where p(s, {) may be nonvanishing] is
not symmetric although the crossing symmetry re-
quires that p(s, {) be symmetric; see Fig. 2. The
situation differs from that encountered with the
Mandelstam representation by the presence of the
presence of the boundary |stu| = 8840m°. However,
this boundary is symmetric in s and {; hence, it
cannot account for the asymmetry of p(s, ).

It is essential to verify that the Landau curve
t%(s) actually enters the domain |stu| < 8840m®. We
find that it does enter about s = 10m®. If we look
at the curve |stu| = 8840m’ in the vicinity of ¢ =
10m®, we do not find a Landau singularity. The
singularities of the absorptive part are not sym-
metric under the interchange of s and ¢ within the
symmetric boundary [stu| = 8840m°.

Thus, once again the no-production assumption
has placed us in the desired circumstance. Either we
renounce the possibility that production processes
can be null (in the presence of nontrivial scattering),
or we admit the possibility that p(s, ¢) vanishes
within the relevant part of ¢ > t3(s). In either case
it follows that nontrivial scattering implies produc-
tion, for, if the second alternative obtains, it follows
that the absorptive part vanishes. The arguments
are given for the case of the Mandelstam representa-
tion above and no complications arise from the
domain restrictions. It then follows from the elastic
unitarity condition that the scattering amplitude
is also null. Hence, we find that scattering implies
production.
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It is shown that the set of states for three noninteracting particles can be put into a one-to-one
correspondence with the set of irreducible representations of SU;. This classification leads to three-
particle angular momentum states which treat all particles on an equal footing. The states exhibit
the maximum localization compatible with a given total energy, momentum, and angular momentum.

Only nonrelativistic particles are treated.

INTRODUCTION

LEMENTARY processes involving three or more
interacting particles exhibit an extremely rich

and complicated structure. In view of this com-
plexity, it is important to at least have a complete
kinematic understanding of systems composed of
several noninteracting particles. For example, non-
interacting particle states may be used in the case of
short-range interactions to form a complete set of
basis vectors for an S matrix formulation of scatter-
ing theory. In the complementary bound-state prob-
lem, regular and irregular free-particle solutions are
of use in the generation of trial wavefunctions.
In any classification of multiparticle states it is
important to diagonalize those variables which are
known to be constants of motion from general invari-
ance principles. Thus plane-wave states |qig.- - -¢q.)
diagonal in the individual 4-momenta ¢, and the
total 4-momentum @ = _ g, are useful in exploiting
translational invariance. To benefit from rotational
invariance as well, it is necessary to abandon plane-
wave states in favor of states diagonal in the total
angular momentum. A beautiful discussion of how
such states may be constructed as linear combina-
tions of plane-wave states has been given for the
case of three particles by Wick.! He forms states
|1QJJ., wjj,) which are diagonal in the total 4-
momentum and the angular momentum about the
center of mass. In addition, his states are also diag-
onal in the total energy w and angular momentum j
of particles 1 and 2 in their center-of-mass frame.
Besides diagonalizing J, the Wick states enjoy a
further advantage over plane-wave states in that
the particles are partially localized. A knowledge of
interparticle distance is very important when deal-
ing with short-range interactions. For example, state
vectors with moderate values of w and large j describe
a situation in which particles 1 and 2 are almost al-

1 G. C. Wick, Ann, Phys. 18, 65 (1962).

ways very far apart and therefore very unlikely to
interact. An elaboration of this line of reasoning
leads to cluster decomposition properties for the
S matrix.?

Unfortunately, the type of localization exhibited
by Wick states is not always convenient since the
third particle is treated asymmetrically. Thus, while
the spatial correlation between particles 1 and 2 is
clearly defined, that between particles 1 and 3 or 2
and 3 is not quite so evident and must be obtained
with the aid of recoupling coefficients.

There are instances in which it would be ad-
vantageous to have explicit information about all
interparticle correlations simultaneously. We may
cite as an example the study on a Dalitz plot of
particle distributions arising from three-body de-
cays. There one asks for those distributions in three-
body momentum space which are compatible with a
given total angular momentum and which also
imply a high degree of spatial correlation among all
three particles.

From what has been said, it is evident that it
would be useful to have a method for constructing
multiparticle angular momentum states which treat
all particles on an equal footing. Major advances in
this direction have been made for the case of three
nonrelativistic particles in a series of important
papers by Smith.>** In his first paper, he discusses
the three-body operators which commute with the
total energy and momentum, and shows that they
generate the six-dimensional orthogonal group 0,.°
From 0O, he is able to select a subgroup © which
treats all three particles symmetrically. In a second
paper he applies operators from © to the problem

2 E. H. Wichmann and J. H. Crichton, Phys. Rev. 132,
2788 (1963).

3 F. T. Smith, Phys. Rev. 120, 1058 (1960).

4« F. T. Smith, J. Math. Phys. 3, 735 (1962).

5 In general, script letters will be used to denote groups or

group elements; block letters will be used for the correspond-
ing Lie algebras.
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of three particles confined to a plane and obtains a
complete solution for this special case.

It is the purpose of this paper to extend the results
of Smith to the general case of three particles in
space. Sections 1 and 2 comprise a review of the
pertinent results on Os and D contained in Smith’s
work. In Sec. 3 it is shown that D is isomorphic to
the three-dimensional unitary group U,. Section 4
provides a résumé of well-known facts concerning
representations of U, and its unimodular subgroup
SUs;. Section 5 is devoted to the choice of a sym-
metric three-particle coordinate system. The stage
is then set for Sec. 6 where it is shown that three-
particle states can be completely classified according
to their transformation properties under the action
of the SU; subgroup of . That is, the set of three-
particle states can be put into one-to-one corres-
pondence with the set of irreducible representations
of S8U;. Section 7 treats some aspects of the embed-
ding of SU; in 0. A final section briefly treats the
application of SU, states to three-body decays.

Our discussion in this paper is limited to non-
relativistic particles. The relativistic case will be
treated in a second paper.

1. THE INVARIANCE GROUP FOR THREE
PARTICLES

A. The Introduction of O,

The quantal specification of a three-particle state
requires nine independent commuting operators. It
is natural to take four of them to be the total 4-
momentum Q. One then asks for those operators
which commute with Q. In the case of equal-mass
particles, this is equivalent to asking for the real
linear transformations which leave invariant the
forms

¢ +49+4q=0Q 1.1)

and
o+ ¢+ g =2mT. (1.2)

The general mass case is treated in an Appendix.
Let P be a nine-dimensional vector with the com-
ponents q,, to qs,

P = (4, 92, Qs), (1.3)

and introduce the vectors u;(z = 1, 2, 3) defined by
u, = (100; 100; 100), (1.4)

u, = (010; 010; 010), ete. (1.5)

Then Egs. (1.1), (1.2) are equivalent to the forms
P'u,' = Q.’ (16)
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P* = 2mT, 1.7)

and it is evident that the required transformations
consist of all nine-dimensional orthogonal trans-
formations O, subject to the constraint that the
vectors u; be left invariant. These transformations
form a subgroup G of ©,. More formally, ¢ € ¢ if

(gP)-(gP) = P-P (L.8)
and
(1.9)

To examine G further, it is convenient to make a
linear transformation © on the basis vectors,

gll,- = Uu;.

—@2h ot 0
o= |—@6hH —@6hH 2.6. (1.10)
3'% 3‘% 3"%

Each entry represents a 3 X 3 unit matrix multiplied
by the indicated coefficient. © is orthogonal, and
has determinant +1. Under the action of © the
vectors u; and P are transformed to

u, —u, = (0;0; 3¢ 00), (1.11a)
u, —uj = (0;0;03%0), etc., (1.11b)
PP =", "), (1.12)
where

" = (@ — q)/2}, (1.13)
Pm = (29s — q, — %)/6*; (1.13b)
¥ = (@ + @ + @)/3 = Q/3L.  (1.13¢)

The inverse transformation is given by
@ = —p¥/2' — p®/6t + p¥/3t,  (1.14a)
@ = p/2! — p®/6 4 p© /34, (1.14b)
g, = 2p®/6" + p/3%. (L.14¢)

At the same time, the group G undergoes the auto-

morphism
g—¢g = 0go. (1.15)

Since 0 is orthogonal, the group G’ is also orthogonal
and isomorphic to §. Moreover, just as the elements
of g are constrained to leave the u, invariant, G’
must leave the u/ invariant,

for all ¢’ €g'. (1.16)

Referring to the form of uf, Eq. (1.11), one sees
that every element ¢’ of §' must have the form

,_<sm0)
g—OI’

gui = w

(1.17)
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where 9 is an arbitrary 6 X 6 orthogonal matrix, and
I denotesa 3 X 3identity. Thus g’ (or G) is reducible
and is in reality the six-dimensional orthogonal group
Os.

B. The Permutation Group on Three Objects

At this point it would seem natural to initiate a
study of the general properties of g'. However, we
choose instead to first study a discrete subgroup
of ¢’, the group S; of permutations on three objects.
As becomes evident later, our choice is motivated
by the desire to treat all three particles sym-
metrically. That S; is in fact a subgroup of ¢ is
clear, for the forms (1.1). and (1.2) are clearly in-
variant under arbitrary permutations of the three
particles.

The permutation group on three objects embraces
six elements. They may conveniently be taken to be
the transpositions ®,,, ®,3, and ®;; which inter-
change particle pairs, the cyclic permutations €
and @* which effect the operations 123 — 2 3 1 ete.,
and the identity operation I. Any product of ele-
ments can be reduced by the group laws to a single
element. For example,

@236)12 = e (118)
and

e =1 (1.19)

Each transposition forms with the identity a sub-
group of order 2. The cyclic permutations and the
identity form a subgroup of order 3.

Since G’ is reducible, its elements can be taken
to be the group of 6 X 6 orthogonal matrices acting
on the vector space spanned by the six-component
vectors p,

p = (p(l), p(z))_

The elements of S; are then also represented by
6 X 6 matrices. These matrices may be divided into
two classes depending on whether their determinant
is plus or minus one. For example, under the trans-
position @,

(1.20)

p(l) — _p(l), (1.213)
p® —p®, , (1.21b)
so that @,, has the matrix representation
-1 0 '
P, = ( 0 1) (1.22)

with determinant —1. Under the cyclic permuta-
tion ¢,

P —274gs — @) = —p®/2+ (3"/2)p?, (1.23a)
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p¥ = 6720 — ¢ — qs) = (=32 — p?/2,
: (1.23b)
giving @ the representation

Ty
T2\3t 1
with determinant +1.

From the group relations of the form (1.18) and
(1.19) we may deduce that all the transpositions
have determinant —1; and the eyclic permutations,
including the identity, all have determinant +1.
Consequently, the cyclic permutations enjoy a con-
tinuous connection to the identity which lies entirely
within the group ¢/,

e = (1.24)

C =
with

exp (3rS) = I cos 2r + Ssin Ir (1.25)

0 1
S‘(—l 0)’

C. The Subgroup D

(1.26)

Armed with these few facts about S;, we return
to a more general study of G’. Let & be that portion
of §' which is infinitesimally generated. In the
neighborhood of the identity, an arbitrary element
of & is of the form

®R = I + €R. 1.27)

For ® to be real, orthogonal, B must be real and
antisymmetric,

(1.28a)
(1.28b)

There are 15 linearly independent antisymmetric
6 X 6 matrices. Let |{) denote a six-component
column vector in a real vector space whose ¢th
component is one, and whose remaining components
are zero; let (¢| be the corresponding row vector.
Then the space of 6 X 6 real antisymmetric matrices
is spanned by the matrices R,,,*

i9)
R, =190 — 1DGl; 4,j=1,2,---,6; ix=]j.

(1.29)

The R,; together form a 15-dimensional Lie algebra
Lo, subject to the rules

(RiiyRual =0, isjs=ms=n, (1.30a)
[R:;, Ri] = Ra, (1.30b)
R,’,‘ = '—R,',-. (1.300)

¢ The subscripts 7, j are labels for the different matrices,
and are not to be confused with matrix elements.
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By definition, L, is the Lie algebra of 05. Note that S
defined by Eq. (1.26) belongs to L.

Not all the elements of L, treat all three particles
equivalently. For example, transformations gener-
ated by R,; with ¢, j < 3 affect only the vector
p", and by Eq. (1.14¢) the momentum q; of particle
3 is left unchanged. There is, however, a subset L, of
elements in L, which does. Moreover, L, is a Lie
algebra in its own right and may be exponentiated
to yield a subgroup D of G'. To see how this comes
about, consider the automorphisms of L, generated
by the permutation group. That is, look at the effect
of the operation

Lo — 87 'Lys, (1.31)

where s is an element of S;. Since s is orthogonal and
Ly, is the set of antisymmetric 6 X 6 matrices, it is
clear that the operation maps L, onto itself so we
do in fact get an automorphism.

We first deal with the eyclic permutations. Define
L, to be the set of all elements F in L, with the

property

¢'Fe=F. (1.32)
Equation (1.32) can also be written in the form
e, F] =0. (1.32")

It is now evident that L, is a Lie algebra. For if F,
and F, are in L,, it follows from the Jacobi identity
that [@, [F,, F,]] = 0. Therefore [F,, F,) is also in L,.

By Eq. (1.25), we may equivalently look for F’s
in L, with the property

[8, F] = 0. (1.33)
Let M be a 6 X 6 matrix written in 3 X 3 block form,
Mll MIZ
Z"I = <M21 M22)a (1.34)
For M to be in L,, it must be antisymmetric,
Mll — __Mll M22 — "’M22 M12 = _MZI' (1‘35)
To be in L, it must also commute with S,
12 21 22 _ 11
[&M%=M +M M M =0, (1.36)
M22 — Mll _ M12 _ M21
or
MY = M, M"™ = M*. (1.37)

Therefore, a general element in L, is of the form

A B

(28 um
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with
A=-4, B=8B. (1.39)

It is now easily verified from Eq. (1.29) that L,
is spanned by the elements J,; and K,; defined by
the relations

Jii =Ry + Rivs.ivs, 1,7<3, ©5j, (1.40)
K,=R; ;i3 —Ris,;, 1,j<Z3.
From Eq. (1.30¢) it follows that

Ji = —Jd;, K., = K;,. (1.41)

Consequently L, is nine dimensional. Note that the
element S used to define L, is itself a member of L,.
It is related to the K,; by the equation

S=3> K. (1.42)

Since L, has 15 elements, there are still six ele-
ments to be accounted for. They may conveniently
be taken to be matrices N of the form

v=(5 2

A=-4, B-= (1.44)

The space of matrices N is spanned by the elements
V.i and W, defined as

Vu = Ru - Ri+3.i+3)
Wi =R; s + Bis.,y
Inspection of Egs. (1.40) and (1.45) shows that they
may be inverted to give R in terms of J, K, V, and
W; and our accounting is complete.

It is of interest to find the effect of €@ on ¥V and W.

To do this, calculate the commutators of S with
V and W,

(1.43)

with
-B.

1, <3, ©1#j (145)

(S, Vi:'] = —2W, [S; W.l=2V,. (1.46)
It follows that
-1 = 4 .. i 4 ..
e ' V;,€ =cossrV,; + sin saW;, (1.47)
G_IW”G = €08 %WW” - Sin %T V,','.

Next, consider transpositions. To study them,
it is sufficient to examine the effect of ®,, since
together ®,, and @ generate all of S; and the effect
of € is already known. Referring to Eq. (1.22), we
readily obtain

(1.48a)
(1.48b)

G)—I;Jii(?l2 =
P LK i® =

Jii,
’_KiH
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@;;Vii(?ﬂ =
(P-;;W.'i(})xz =

Viiy (1 4‘.80)
- W,','. (1 .48d)

Thus, except for a change in sign of some of its
elements, L, remains unaffected. Moreover, the effect
on L, is the same for each transposition.

We conclude that L, has all the desired attributes.
For if we were to relabel the particles, i.e., permute
them, L, either remains unaffected or undergoes
the sign change (1.48b). If there is a sign change,
it is still impossible to tell which pair of particles has
been interchanged and which particle has been left
alone. Thus L, treats all three particles with com-
plete symmetry.

2. REALIZATION OF ¢ BY UNITARY
TRANSFORMATIONS

In the work so far, the Lie algebras L, and L,
have been defined in terms of 6 X 6 matrices. To
continue with a quantum mechanical discussion, it is
necessary to have a realization of L, and L, as Lie
algebras of Hermitian operators acting on three-
particle state vectors. That is, the quantum analog
to the R;; is a set of operators A;, with the property

A, P] = iR,p. 2.1)

Let r,, r,, and r; denote the position vectors of parti-
cles 1 to 3. Corresponding to Egs. (1.13), we define
relative coordinates r'"’ to r®,

Y =27, — 1), (2.2a)
r® = 6712 — 1, — 1), (2.2b)
r® =37, 41, +1,). (2.2¢)

Let r be a six-component position vector defined
analogously to p,

r= (", r?). 2.3)

It is easily verified that r and p are Hermitian and
canonically conjugate,”

[ri, D] = 26;s. (2.4)
Consequently, we may take for A;. the expression
Ajx = 1Dx — Tap; (2.5)

One easily checks that Eq. (2.1) is satisfied. A similar
relation holds for r,
[A,‘k, r] = iR,—kr. (2.6)

Finally, the commutators of the A;;, with themselves
obey the Hermitian analog of Eq. (1.30),

7 The units are such that # = 1.
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[Ajk; Alm] = 0, j ;é k ;é l ;é m, (2.73)
[Aix, Aw] = —iAy, (2.70)

A,‘k = "A;”-. (2.70)

By their definition in Eq. (2.5), the A,; are subject
to a bilinear identity,

A,’,’Akl + A”Aik + A,-kA” = 0, 'L = j = k #Z l. (2.8)

Therefore, the A;; are not the most general objects
satisfying the commutation rules (2.7). That is, the
representations of §’ = 04 carried by unitary trans-
formations on three-particle state vectors are not
the most general ones. Consider the quadratic
operator A® defined by

2 __ 1 2
A =1 3 A%.
.7

From Eq. (2.7) it follows that A* commutes with all
the A,

(2.9)

[A%, A;;] = 0. (2.10)
Consequently, A® is a multiple of the quadratic
Casimir operator’ for L,, and its eigenvalues can
be employed as one of the parameters necessary to
specify a representation of G’. We shall see that as a
consequence of the identity (2.8), the value of A” is
completely determined in terms of an operator con-
structed out of elements in L,. In Sec. 1 where we
dealt with 6 X 6 matrices, L, was defined by Eq.
(1.40) to be certain linear combinations of elements
in Ly. In exactly the same way, we define Hermitian
operators J;; and K;; in terms of the A;;,

Jii = A;; + Aiva ez, (2118,)
K,',' = A,',,'+3 - A,‘+3,1', (2-11b)
§S=1%>K. (2.11¢)
It follows that
1 < 1 3
A= Z A'f‘i=— Z (J?J'+K?i)
2.5 2.5
3
+ E (Ai,f+3Ai+3,i - Ai.iAi+3.i+3)- (2~12)
i,7=1
But by Eq. (2.8),
_AiiA|'+3.:‘+3 = Ac‘,:‘+3Ai,i+3 + Ai,i+3Ai+3.i' (2-13)
Consequently,
=32 UL+ Ky -8 (219

. 8 M. Hamermesh, Group Theory (Addison-Wesley Pub-
lishing Company, Inc., Reading, Massachusetts, 1962), p. 317.
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The precise implications of this result for representa-
tions of g’ will be discussed in Sec. 7.

It is of interest to have the operator realizations
of L, displayed directly in terms of the three-particle
coordinates q; and r;. Since J;, is antisymmetric in
its indices, it is convenient to introduce J; defined by

Ji = %eiikJik- (2-15)

Using Egs. (2.11), (2.5), (2.3), (2.2), etc., we find
that J is indeed a vector as the notation suggests,

J=1xq +1.%q +13%q; —r® xp®.  (2.16)

In the center-of-mass frame, r® = 0; correspond-

ingly p®> = 0 in the center-of-momentum frame.’
Therefore J may be interpreted either as the total
angular momentum about the center-of-mass, or
the total angular momentum in the center-of-
momentum frame. Similarly, the elements K;; form
a symmetric tensor. In dyad notation,

3K = (r, — 12)q5 + (1 — 12)Q,

+ (r; — 1,)q. + transpose. (2.17)

Note that J and K involve the three particles equiv-
alently as anticipated.

3. CLASSIFICATION OF L,

We know that L, is the Lie algebra of 0s. What
is the corresponding group for L,? From the definition
(2.11a) and the relations (2.7), the commutators
of J with itself are the expected ones for angular
momentum,

Wi, i = dejud. (3.1)

Similarly, the commutation rules of K with J are
those expected for a tensor,

[J,', K“] = ’iéikamz + ie,-;,,,K,,,,.. (3.2)

By Eqgs. (2.11c¢), (1.33), the trace of K commutes
with all of L,. This circumstance, and the fact that
K transforms under J as a tensor, suggests the
introduction of a spherical basis. Since K is sym-
metric, it may be decomposed into a scalar T, and a
five-component object of spin 2, T'2:

Tg = % Z Ku‘ = S, (3-3a)
T: = %(Ku - K22 + 21:K12)) (33b)
T? = —K13 i '[;K23, (3.30)
Tﬁ = 6_%(2K33 - Ku - Kzz); (33d)

* Note that p® and r®) cannot vanish simultaneously
since they do not commute.
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’, = K3 — 1Ky, (3.3e)
2, = 3K, — K, — 26K,,). (3.31)
Equations (3.1) and (3.2) now take the form
(Jo, Ju] = =J., (3.4a)
[Jo, Th] = mT%, (3.4b)
e, J] = 2J,, (3.4¢)
Vo Thl =[G F m)§ = m + DIThe,  (34d)
where
Jo = Ji & 1, Jo = Js. 3.5)

Finally, the nonvanishing commutators of T, with
itself are given by

[sz T—z] = 4J0; [Tz) T—l] = “‘2J+:
(T, T = —2J_, [Ty, T} = —2J,,
(T, To] = 6*J+: (T-1, To] = 6%J—:

(3.6)

where the superseript j = 2 has been dropped for
notational convenience.

Notice that T nowhere appears on the right-hand
side of a commutation relation. Consequently, if we
separate out 79, the remaining elements 72, J.,
and J, form a Lie algebra L, of dimension 8.

We assert that L, is simple. That is, L, contains
no invariant subalgebra L; such that all commutators
of the form [L,, L;] are also in L. The proof is by
contradiction. Suppose that L; is an invariant sub-
algebra. Let F be an element in L,. By definition, F
can be expressed as a linear combination of elements
in L,,

F=73 cTrn+ dnn 3.7
Form successive commutators of F with J,.. Then
by Eq. (3.4d) either all the ¢,, vanish or L, contains
all the T2, In the latter case, L; must also contain all
the J’s by Eq. (3.6) and L; = L, contrary to assump-
tion. Therefore all the ¢,, vanish. Form once again
successive commutators of F with J,. By Eq. (3.4)
either all the d,, vanish or L; contains all the J’s.
In the latter case, form the commutators [T3, L,].
From Eq. (3.4d), L; must contain all the T2 and
L, = L,, again contrary to assumption. Therefore,
the d,, are also zero and L, vanishes identically.

It now follows that L, is isomorphic to SUj;, the
Lie algebra of traceless Hermitian 3 X 3 matrices,
for there is only one simple Lie algebra of dimension
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8.'%*! Adjoining T; to L,, we get Us, the algebra of
3 X 3 Hermitian matrices. Thus L, is isomorphic
to Us; and D is isomorphic to the group of 3 X 3
unitary matrices.

This result can also be seen directly without re-
course to the theory of simple Lie algebras by
examining the space of matrices M defined in Egs.
(1.38), (1.39). Making the unitary transformation

U with
U= 2-*(;. I‘), (3.8)
one finds
UMU™ = (A T 323)' (3.9)

The space of matrices M is thus reducible to two sets
of 3 X 3 matrices. Matrices of the form 4 -+ 4B with
A and B real and obeying (1.39) span the space of
3 X 3 anti-Hermitian matrices, and therefore upon
exponentiation generate the group Us. The matrices
A — iB then generate the conjugate representation
Ux.

4. THEOREMS ABOUT U; AND SU,

In the following sections we will discover that
three-particle states can be completely classified by
their transformation properties under L,. We fore-
arm ourselves by reviewing some well known facts
about Us,, SUs, and their representations.

There are two popular ways of treating SU,. In
the first, one observes that SUj; is simple and thereby
subject to the methods developed by Cartan for
all simple Lie algebras. In the second, one embeds
SU, within G£; and then uses the Weyl classification
for the general linear group.

A. Cartan’s Method

The Cartan method'''* employs as a basis for
the Lie algebra operators which are a generalization
of the ladder and diagonal operators, J, and J,,
of angular momentum. In the case of SU;, there are
two commuting operators which play roles analogous
to J, and six ladder operators. Call the commuting
operators H, and H,. The number of mutually
commuting operators within an algebra is called
the rank of an algebra. Thus SU, is of rank two.
The 6 ladder operators are conveniently labeled by
3 two-component vectors called “root vectors’”’, and

10 C. Fronsdal, “Elementary Particle Physics and Field
Theory” in 1962 Brandeis University Summer Institute Lec-
tures in Theoretical Physics (W. A. Benjamin Company Inc.,
New York, 1963), Vol. 1, p. 461 ff.

i R. Behrends, J. Dreitlein, C. Fronsdal, and B. W. Lee,
Rev. Mod. Phys. 34, 1 (1962) and references cited therein.
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F1a. 1. Root vectors for SU ;.

their negatives. Let e, and e, be orthogonal unit
vectors. Define the vectors

Q= (3_*)e1’
8 = 37128, + €,/2,
= —(37/2e, + e/2.

They are shown schematically in Fig. 1. We denote
the ladder operators by E(u) where u is one of the
vectors (4.1) or their negatives.

The virtue of this labeling is that the commutation
rules take a particularly illuminating form. The
commutator of E(y) with H; is

[H:, E(w)] = y-e.E(w). (4.2)

The H; thus serve to establish the coordinate sys-
tem for the root vectors. The commutators between
pairs of E’s, E(u) and E(v), are of two types. If the
root vectors u and v are equal and opposite,

[E(w), E(—w)] = Z: (e:wH..

@.1)

4.3)

If the sum of y and v is again a root vector, the
commutator takes the form

[E(w), E(")] = N(v} vE@® + v), (4.4)
where N (g, v) is a numerical factor equal to =673,
The positive N’s are N(e, ), N(—v, —e), N(y, —8),
N(—8, @), N8, —v), and N(—e, 8)."°** All other
commutators vanish.

From an algebraic viewpoint, the choice of the
two commuting operators is somewhat arbitrary.
For example, one could have choosen the elements
now labeled E(a) and E(B) in place of H, and H,.
The particular choice one makes depends on which
elements are to be diagonalized. In the case at hand,
it is natural to diagonalize J,. Therefore we take H,
to be a multiple of J,. The Cartan basis is then
related to the basis already given for L, by the ex-
pressions

H, = (12)7}J,, (4.58)
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H, = (24)7'T,, (4.5b)

E(+a) = (29)7'T,,, 4.5¢)

E(+8) = £48) ¥T., =+ J.), (4.5d)

E(xy) = £48) ¥ T+ F J2). (4.5¢)

Suppose that H, and H, are diagonal. Let |m,m,)
denote an eigenstate with the property

H, |mymy) = m; |mym,). (4.6)

Since the H; are Hermitian by Eqs. (4.5a, b) the m;
are real. It is convenient to treat them together as
the components of a single vector m called a weight.
From the commutation rules (4.2) it follows that if
E(u) |m) is different from zero, it is an eigenstate
with weight m 4 u. Consequently, a single weight
generates a whole set of weights. The set of weights
can be ordered by means of the following definitions:

1) A weight is positive if its first nonvanishing
component is positive.

2) A weight m is higher than m’ if m — m’ is
positive.

We can now state the fundamental theorems of
Cartan concerning representations:

1) In an irreducible representation, the eigen-
vector with highest weight is unique, i.e., non-
degenerate.

2) Two irreducible representations are equivalent
if they have the same highest weight.

3) Every highest weight m, for SU; is of the form

my = ()\1/6)(3%31 + e,) + (>\2/6)(3%e1 -~ &), (&.7)
where A, and X\, are arbitrary nonnegative integers.

Taken together, the theorems show that an ir-
reducible representation of SU; is completely char-
acterized by the two integers N, and A,. We denote
this representation by I'(A;, A;). It is easily shown
that the conjugate representation is given by
T'(As, \1). That is, T*(\;, X)) = TN, o).

B. Weyl's Method

In contrast to the infinitesimal methods of Cartan,
the method of Weyl"® deals with finite group ele-
ments. Consider the lowest-order representation of
G&,, the general linear group of dimension 3, pro-
vided by arbitrary linear transformations on a three-
dimensional vector space. By taking repeated Car-
tesian produets to form tensors of higher rank, one
obtains representations of higher order. The set of
tensor representations can be reduced by forming

1z Reference 8, p. 377 ff.
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linear combinations of tensors with permuted indices.
Thus, the space of rth-rank tensors is reducible into
subspaces consisting of tensors with different sym-
metry. For each symmetry there is a corresponding
Young tableau. In the case of G£;, the tableaux for
tensors of rank r can contain at most three rows of
lengths f,, f., and f; with ) f; = r and f, >, >/, >0.
Consequently, an irreducible representation of G£,
is characterized by the partition (f,f.fs).

Next consider the unitary subgroup U; of gg£,.
Its Lie algebra is spanned by the nine 3 X 3 Hermi-
tian matrices. Since there are only 9 linearly inde-
pendent 3 X 3 matrices, the Lie algebra of U; when
taken over the complex field is isomorphic to that
of GL,. Therefore, (f,f.f;) also serves as a label for
irreducible representations of Us.

If we pass from U; to SUs, all representations of
the form (f, + ¢, f + ¢, f + €), where e is an arbi-
trary integer, become equivalent since tensors
belonging to the different partitions differ in their
transformation properties only by powers of the
modulus which is now required to be one. Con-
sequently, for SU;, the partition (f,f,f;) can be re-
placed by the differences k,=f,—f; and k,=f,—7,.
It follows from the inequalities on the f;, that
k. > k; > 0. We denote these representations by
1 (kks,).

One may wonder if there is some way to get at
k, and k, by infinitesimal means. The question has
been answered in the affirmative in a series of papers
by Bargmann and Moshinsky."'** The Lie algebra
of G£; is spanned by the matrices X,

Xii = Iz)(]I) i’ .7 < 3’ (48)
with the commutation rules
[Xi:‘; Xkl] = BikXil - 5“in~ (49)

The commutation rules for L, can be put into the
same form by a linear transformation,

Ciw = 3K + 1) (4.10)

In analogy to the Cartan state of highest weight,
Bargmann and Moshinsky define a state [g,g.gs)
of highest weight by the requirements

C“ |g> = g |g>;

Cii lgy = 0,
They then pass to SU, by discarding the trace
011 + 022 + _033 and setting kl = g — (s
k2 = gz - g3‘

13V, Bargmann and M. Moshinsky, Nucl. Phys. 18, 697
(1960); 4bid. 23, 177 (1961).
14 M. Moshinsky, Rev. Mod. Phys. 34, 813 (1962).

(4.11)
i < j.
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The numbers %, and k., are evidently similar to A,
and A,. The precise relation is given by

(M) = DKy, k) (4.12a)

when
ky =N+ Ay (4.12b)
ks = M. (4.12¢)

Since T™*(A\h.) = T(\;, A\,), we have the result
P*(klkZ) = P(ku k, — kz)-

C. Embedding of SU, within SU,

SU, contains SU, as a subalgebra in two alge-
braically distinct ways. Consider the two sets of
operators X ., X, and Y., Y, defined by the relations

X. = 6'B(xe),

X, = 3'H,,

Y. = —2B3YExS) + E(Fy)],
Y, = 23)H,.

It is easily verified that both sets satisfy the usual
commutation rules for SU,. Now look at the re-
maining elements of SU;. For the X set we see that
there is a fourth element, X, = H,, of SU, which
commutes with all the elements of the X SU,. How-
ever, for the Y set there is no fourth commuting
element. This is most easily verified by examining
Egs. (3.4) and (4.5). Thus the embedding of the X
and Y SU,’s within SU; are algebraically distinct.

The X and Y sets also differ in their eigenvalue
spectrum. If we look at the state of highest weight
defined by Eq. (4.7), we see that X, has the eigen-
value (A, + X;). That is, the eigenvalues are integral
and half-integral as expected for SU,. By contrast,
Y, has only integral eigenvalues. Thus the YV set
generates only the single-valued representations for
the rotation group. For this reason, it is sometimes
referred to as Rs.

(4.13)

I

D. Specification of States within a Representation

The procedures of Weyl or Cartan provide two
indices for SU; which serve to distinguish different
representations. Once one has a given representation,
it is necessary to have further indices in order to
specify the different vectors within a representation.
The situation is analogous to the rotation group
(8U,) where one uses j to specify the representation
and the additional index j, to specify a state within
the representation.

In the case of SU,;, we need three additional
indices. They may be obtained in two different ways.
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The choice of which is to be used is dictated by
physical considerations.

The first method, familiar from unitary symmetry
schemes,'® employs an SU, of the X variety along
with its commuting operator X,. The vectors within
a representation are then labeled by the eigen-
values of X* = X} + {(X.X_ + X_X.), X,, and
X,. In the “eightfold way”’ they have the physical
interpretation of isotopic spin, its z component, and
hypercharge, respectively.

The second method of indexing uses an SU, of the
Y type. In this case one gets with relative ease only
the two labels provided by the eigenvalues of Y*
and Y,. For the three-body problem these operators
represent the total angular momentum and its 2
component.

The necessary third label is much harder to ob-
tain. One therefore wonders what a third index is
good for. That is, in a representation characterized by
A and A (or k, and %,), how many states have the
same J and J,? This problem has been studied by
Racah.'® His results are summarized in Table I. We
see that a third label is necessary only for the states
with J > 2. Furthermore, the degeneracy depends
essentially only upon J.

To produce a third index, it is necessary to find
an operator which commutes with R;. We already
know that there is no element of SU, which does so.
The next objects to consider are quadratic and
higher-order operators formed by products of ele-
ments in SU;. One is then led to the cubic and bi-
quadratic operators @ = J-T:J and @' = J-T-T-J
where T is the Cartesian counterpart of T2. It is
readily verified that @ and Q' commute with all the
elements of R;. Moreover, one can show that they
are essentially unique in that all other operators
which ecommute with R, are either functions of Q
and Q' or Casimir operators whose value depends
only on A, and A,. Finally, Bargmann and Moshinsky

TasLE I. Multiplicity of Rs(J) within SU (A hg).

J A, Az Multiplicity
even both even J+1
one or both 17
odd 2
odd both even 3J-1)
one gédbOth W+ 1)

1 See, for example, J. J. deSwart, Rev. Mod. Phys. 35,
916 (1963) and references cited therein.
16 G, Racah, Rev. Mod. Phys. 21, 494 (1949).
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have shown that the use of Q alone is sufficient to
break all degeneracies."

5. DALITZ-FABRI COORDINATES

In order to construct representations for L,, it is
necessary to have a convenient system of coordinates.
Since L, treats the three particles equivalently, the
coordinate system should also.

A. Momentum Coordinates

First consider momentum coordinates. It is
natural to work in the center-of-momentum frame,
and then pass to other frames by Lorentz transforma-
tions. We are then faced with the problem of param-
eterizing 3-momenta, ¢, to ¢s, subject to the con-
straints

&+ @+q =06 =0 (5.1)
q; + a; + q = 2mT. (5.2a)

Note that by using Eq. (5.1), Eq. (5.2a) can be
written in two other forms,

(5.2b)
(5.2¢)

qf + qg + qg — p(l)’ + p(2)’ — pz’
@ — ©)° + @ — )° + (@G — ) = 3p~

Consider the “momentum’’ triangle whose vertices
are the endpoints of the three momentum vectors
directed from a common origin, the center-of-
momentum. By Eq. (5.1), the vectors lie entirely
within the plane of the momentum triangle. A
triangle is kinematically equivalent under rotations
to a rigid body. Consequently, it requires three
parameters to specify its orientation in space. These
may conveniently be taken to be the three Euler

F1g. 2. Dalitz-Fabri coordinates.
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angles a, 8, v of the rotation ® required to transform
the momentum triangle from some standard “refer-
ence”’ orientation to its actual orientation. The
specific choice of body-fixed axes will be described
later.

 Having dealt with the orientation of the momen-
tum triangle, we are left with the problem of param-
eterizing the triangle itself. This is most easily done
by the elegant method of Dalitz.” Consider an
equilateral triangle (not to be confused with the
momentum triangle) of unit altitude (see Fig. 2).
It is easily verified that the sum of the three distances
from an interior point to each of the three sides is
the same for each interior point, and equal to one.
We identify the three distances with the quantities
q?/p°. By this construction, Eq. (5.2) is automatically
satisfied. Now, following Fabri,'® we introduce polar
coordinates p and ¢ within the Dalitz triangle by the
relations

Qi = 3p°(1 + k), (5.3)
with

£ = cos (¢ — Zn), (5.4a)
£ = cos (¢ + %n), (5.4b)
& = cos ¢. (5.4¢)

The £, satisfy the relations
' St =0, (5.52)
2E=3 (5.5b)
2 bk = —4, (5.5¢)
I1 & = % cos 3¢. (5.5d)

We know that Eq. (5.2) is automatically satisfied
for all values of p and ¢ by construction. What about
Eq. (5.1)? For the momenta to be real, they must
satisfy the inequalities

(a5 = la:D)* < af < (las} + l@l)*  (5.6)
or

4qiqr > (@F — qF — qp)”. (6.7)
Insertion of the relations (5.3) into (5.7) transforms
the inequalities to the form

41 + pE)(L + o) = ot — 1)°. (5.8)

A summation over cyclic permutations and use of

Eqgs. (56.5) gives the final result
P < 1.

17 R. H. Dalitz, Repts. Progr. Phys. 20, 163 (1957).
18 B, Fabri, Nuovo Cimento 11, 479 (1954).

(6.9)
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Consequently, the kinematically allowed region for
our new coordinates is the unit disk inseribed within
the Dalitz triangle.

We still have to specify the choice of body-fixed
axes. Let y be an angle defined by the relation

p = €08 2¢. (5.10)

We define the body-fixed X, Y plane to be the
plane of the momentum triangle. The choice of unit
vectors e, and e, within the plane is made according
to the prescription'®

pV’-e, = p cos ¢ sin }¢,

p-e, = —psin ¢ cos 34,
p® e, = p cos y cos ¢,

p®-e, = psin ¢ sin 3¢.

(5.11)

The third unit vector, e,, is chosen by the right-
hand rule,

e, = e. xe,. (5.12)

The origin of the unit vectors is, of course, the
center of momentum. It is sufficient to use the dif-
ference vectors p’ and p‘® since p® vanishes in
the center-of-momentum frame.

With this faet in mind, it is easy to verify that
Eqgs. (5.11) are compatible with our earlier definitions
in Egs. (5.3) and (5.4). Define quantities ¢3; by the
relations

¢ = @ — q.)" (5.13)
Using Eqs. (5.1) and (5.3), we find

¢t = p’(1 — &), (5.14)
or

3¢ — i = 2p"pks. (5.15)

The left-hand side of Eq. (5.15) can be evaluated
with the aid of Eqgs. (1.14, 5.11). One finds, after
some algebra, that

pti = cos 2y cos (¢ — 3m),
pt: = cos 2y cos (¢ + 3m), (5.16)
pts =

cos 2y cos ¢,

as expected.
Finally, the unit vectors have been so chosen that

2 (e.+q)(e, q,) = 0. (5.17)

19 Similar coordinates have been employed by other au-
thors. See, for example, Ref. 4 or B. F. Bayman, Proceedings
of the Eastern Theoretical Physics Conference, 1962, edited by
M. Rose (Gordon and Breach, New York, 1963), p. 81 ff.
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Thus, if we imagine equal masses to be placed at the
vertices of the momentum triangle, the body-fixed
axes become the principle axes of intertia.

In summary, the result of the discussion so far
has been to replace the nine variables q, to q, subject
to the constraint (5.1) by the variables p®, p, ¢, and
three Euler angles. The constraint can now be re-
moved by performing a Lorentz transformation and
adding p® to the list of new variables. A routine
calculation shows that the volume elements of the
two sets of variables are related by the equation

d’q, d°q, d°gs = § d’pPp° dp d®sp dp dg,  (5.18)

where d®, is the volume element for the three-
dimensional rotation group. In terms of the Euler
angles, d®, is given by the expression

d®; = da dy sin 8 dj.
B. Position Coordinates

(56.19)

The choice of Dalitz—Fabri position coordinates
can be made in complete analogy to the momentum
case. We first pass to the center-of-mass frame de-
fined by

L4 4n =060 =0, (5.20)
and define r* by relations analogous to Eqgs. (5.2b, ¢),

i A A D ST (5.21a)

or

T — )+ (r. — 1'3)2 + (1 — 1'1)2 = 3r’. (5.21b)

We then introduce quantities o’ and ¢’ defined by
the counterparts of Egs. (5.3), (5.4), and (5.11), and
three-position Euler angles. In this case the body-
fixed axes are in faet the principle axes of inertia for
the three-body system. Finally, we remove the
constraint (5.20) by performing a translation and
adding r® to the list of new variables. The relation
between the volume elements is given by an expres-
sion analogous to Eq. (5.18),

d’r, d'r, d'r; = } A dr d®gp’ dp’ d¢’. (5.22)

6. THE CONSTRUCTION OF EIGENSTATES
FOR SU,

We now have at our disposal all the necessary
apparatus for a classification of three-body states
according to SU,. Our aim is to demonstrate the
existence of a complete set of three-particle states
Ip®, p; n) which are diagonal in the total momentum
p® and center-of-mass energy p, and which simul-
taneously form a carrier space for irreducible repre-
sentations of L,. The elements of L, commute, of
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course, with p® and p by construction. For the
moment, we use an index n to distinguish between
states having the same energy and momentum but

different properties under L,.
A. The Radial Wavefunction

Let [r', r®, r®) denote the state diagonal in the
position operators r™’ to r'®, or equivalently r, to r,.
The state |[p®, p; n) is completely specified by the
function (¢, r®, r® | p®, p; n). Since p® and r®
are canonically conjugate, we have the immediate
simplification
<r(1) r(2) I.(3) l p(3) p ’ﬂ)

b ’ ? ]
= exp (ip¥ V)", 1%, 01 0,p;n).  (6.1)
For notational simplicity, let
y =, r®,0]0,p;n). (6.2)

The wavefunction ¢ must satisfy the differential
equation
—Viy = p'Y, (6.3)

where (1/7) Vs is the differential-operator analog of p.

Consider the Casimir operator A® of Sec. 2. It is
easily verified that p and A® are related by the
identity

2 Y 2 . —1
p=7 + p; — 5 p. 6.4)
where p, is defined by the equation

p, =17 1p. (6.5)

Therefore, ¢ may be written as a product of radial
and angular wavefunctions in the form

¥ = {(r)g(pdapy)
with f and ¢ satisfying the equations

(L4+22 202D 4 o0, @

5‘5 r or 7

(6.6)

A’g = A0 + g (6.7b)

The arguments of g are position Dalitz—Fabri coor-
dinates with primes omitted for convenience. The
quantity A® is the differential operator analog of
A®. We have written its eigenvalues in the form
A\ + 4) in anticipation of future results.

The fundamental solutions of Eq. (6.7a) are
r 2 Jae2(pr) and r°N,..(pr) where J and N are
Bessel functions of the first and second kind. If we
stipulate that f be regular at the origin, the solution
containing N is excluded. We conclude that
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(1’(”, r(Z)’ r(s) | p(a), p;n>

= g exp (@ -ty N\ualpr),

where g is still undetermined.

6.8)

B. Angular Wavefunctions and the
Harmonic Oscillator.

The determination of g is facilitated by a small
trick. Consider the ‘“harmonic oscillator’” generaliza-
tion of Eq. (6.3) given by

(—=Vi+ ), = 2Ey,.

Using Eq. (6.4) we may again write the solution in
the form

6.9

Y, = flgl- (6.10)

This time f, must satisfy the equation

@ $39 N+

——— 2 v —
e - P+ 215);3 =0. (6.11)

However, g, satisfies the same equation as g. There-
fore, g can be determined by solving the harmonic
oscillator problem and then factoring out the radial
part of the wavefunction.

For our purposes, the harmonic oscillator is most
easily handled in the Fock representation. We define
vector creation operators At and Bt by the relations

Al =270 — ip™), (6.12a)
B' = 27 — ip®). (6.12b)

They obey the usual commutation rules with their

conjugate destruction operators,
[4., 4]] = 5., ete. (6.13)

Inversion of Egs. (6.12) and their Hermitian counter-
parts gives the expressions

p” = (/2HQA" — A),
1/2H@A" + A), ete.

Consequently, the Hamiltonian leading to Eq.
(6.9) is

(6.14)

1
r()

% = (A"-A + B'-B). (6.15)

Finally, we recall that the states generated by arbi-
trary polynomials in A" and B acting on the vacuum
state |0) form a complete basis. The vacuum state
is uniquely characterized by the property

3 |0) =0, 6.16)
and has the position representation
T, | 0) ~ exp (—5). 6.17)
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The first step is to express the elements of L, in
terms of AT and Bf. This is easily done from the
definitions given in Eqgs. (2.5), (2.11), and (2.15),
with the aid of Eq. (6.14). One finds

J = iAxA" + iBxB', (6.18)
K, = i[AB, + AB; — (AjB. + AB)).  (6.19)

We observe that the expression for K is quite com-
plicated in that it contains products of AT with B etc.
It is therefore natural to pass to new variables af

and bt by the canonical transformation
— o-tmR' o A’

a 27%(B + iA), 6.20)

b' =278 — A",

or

A" = @/2H0' - a),
B' = (/20" + a).

The operators 3¢, J, and K now take the more pleas-
ing form

(6.21)

3 = (a'-a + b'-b), (6.22)
J = taxa' + ibxb’, (6.23)
K, = bjb, + bjb, — (aja, + aja,).  (6.29)

Qur task is to construct eigenstates of 3¢ which
simultaneously transform irreducibly under L,. We
first look for the bilinear operators which commute
with J and K. They are easily found to be

N, =a"a, (6.25a)
N, =b"p, (6.25b)
A, =a'b', (6.26a)
A = a-b. (6.26b)

The quantities N, and N, are number operators
measuring the number of excitations of types a and b.
They of course commute with each other. Since they
commute with- 3¢ and the elements of L, as well,
we may require that our states be simultaneous eigen-
states of N, and N, with eigenvalues n, and n,.

What are A, good for? From the commutators of
A, with the number operators, one sees that A,
creates or destroys pairs of a and b excitations,

[Nas, Al = A, 6.27)

Therefore, if we have a representation of L, labeled
by n. and n,, we get back another one labeled by
n, = 1 and n, = 1 by applying A,. Moreover, since
A, commutes with L,, we actually get back the same
representation. The only exception is the case in
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which A_ annihilates all the vectors in a representa-
tion. Since we want the numbers n, and 7, to specify
something unique about a representation, we will
therefore impose the condition that all our states
be annihilated by A_.

This condition does something more for us. From
Eq. (6.22) we see that application of A_ to a state
lowers the energy by two units. On the other hand,
A_ commutes with A® by Eq. (2.14) so that the value
M remains unchanged. Therefore, the radial part f,
of ¢, must be that solution to Eq. (6.11) which has
the lowest energy compatible with a given value of A,
Thus, f, is given by the expression

fL =rte . (6.28)

We can now compute the eigenvalues of A®. Using
Egs. (2.14), (6.23), and (6.24), we find that

A= (N.+N)N.+ N, +4) —4A,A..  (6.29)

Since A_ has eigenvalue zero for the states of interest,
A’ has eigenvalues of the anticipated form A(A + 4)
with

A=n, +n,.
We note also that
S=%ZK“=NI,_‘N,,.
4

(6.30)

(6.31)

Therefore S has the eigenvalues n, — n,. Conse-
quently, the numbers n, and n, for a representation
can be obtained completely in terms of operators
constructed out of elements in L;.

So far, our states are characterized by the numbers
n, and #n,. That is, they are eigenstates of A% and S.
Since both these operators commute with all the
elements of L,, the numbers n, and n, must be re-
lated to the Cartan classification indices A\, and A\,
described in Sec. 4A. They are, in fact, identical to
the Cartan indices as will be shown later. Assuming
this to be the case, our next step is to label states
within a representation. For this purpose we will use
the operators J” and J, as outlined in See. 4D. Our
states will then be labeled by n,, ns, j, and m; and
will satisfy the relations

Noow [nanjm) = n,, [najm), (6.32a)
J? [nagm) = j(G + 1) [naugm),  (6.32b)
J. [nngmy = m |ngnpim). (6.32¢)

In addition, there is of course the annihilation
requirement,

A_ |nn,im) = 0. (6.32d)
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As is well known in the theory of angular momen-
tum, it is really only necessary to have the state
with j, = j. The remaining states can then be ob-
tained by successive applications of J_. We therefore
replace Egs. (6.32b, c) by the requirements

J. |nanbjj> =0, (633)
Jo [nanefi) = j [nansjs)-

In constructing explicit solutions to Egs. (6.32,
6.33), it will prove useful to have creation and des-
truction operators in a spherical basis. They are de-
fined by the relations
~27¥a! + ia)), @ =al, (6.34)
(an)', (6:35)
and similarly for the b’s. The spherical commutation
rules are

s
a; =

ai, = 2'*(al -~ ia,',), Qv =

(6.36)
Finally, we note that A_ has the spherical form
Al = Y, (=D)"aub_n. (6.37)

The states for small values of n, and n, can now

easily be written down. The state withn, = n, = 0
is the vacuum state itself. Thus

100 00) = |0). (6.38)

Naturally, it has zero angular momentum. Next come
the statesn, = 1,n, = Oandn, = 0, n, = 1 given by

10 11) = a; |0},
[01 11) = b] |0).

They both have angular momentum 1.

Proceeding to the case n, = n, = 1, we expect to
have three sets of states with angular momenta
0, 1, and 2:

[@m, a,f.] = Oy g

(6.39)

|11 00y = a'-b" |0), (6.402)

[11 11) = @' xb"), |0, (6.40b)
[11 22) = alb] |0). (6.40¢)

However, A_ fails to annihilate the state (6.40a)
with zero angular momentum. One finds instead that

A_ |11 00y = 3 |00 00). (6.41)

Therefore, the zero angular momentum state must be
excluded. This is in accord with Table I. Put another
way, the wavefunctions for the |11 00) and (00 00)
states differ only in the radial part f,. Since we are
only interested in the angular part g, we get all the
information we need by considering states with the
simplest radial dependence.
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The number of states grows very rapidly for
larger values of n, and n,. For the present, therefore,
we shall only write down states for which n, > n..
The remaining states can easily be obtained merely
by interchanging the roles of a and b. In addition,
we shall present the states in order of increasing A.
With this caveat, the remaining states with A = 2
are given by the n, = 2, n, = 0 representation,

20 00) = a'-a" |0), (6.42a)
120 22) = aja; |0). (6.42b)

They have angular momenta 0 and 2.
The set of states for A = 3 haseithern, = 3,n, =0
orn, = 2,n, = 1. They are given by the expressions

30 33) = (a1)® |0),
130 11) = (a"-a"a; |0),
121 33) = (@,)"B; |0),
121 22) = a;(a’ xb"), |0),
21 11) = (2a'-a'b, — a'+b'a;) [0),
and have angular momenta 3, 2, and 1.
It is now obvious from the examples just given that

the maximum value of j occurring in any given
representation is restricted by the inequality

F<n,4+mn, =\

(6.43)

(6.44)

In fact, for any specified representation, the state
with highest j is unique and given by the expression

My Ty e + My, My 4 1) = (@)™(BD™ [0).  (6.45)

Note that by Egs. (6.36) and (6.37), A_ annihijlates
the state as required.

We assert that the state with j = n, + n, is the
state of highest weight in the sense of Cartan. This
follows immediately from the observation that suc-
cessive application of elements in L, cannot change
the values of n, and n,. Therefore, since the state
is unique, all other states must have lower values
of J, = (12)!H,. Employing Eqs. (3.3d), (4.5b),
(6.24), we find H, is given by the expression

H, = 3[3(bobo — a0) + N, — N,J.  (6.46)

Consequently, the highest state has the weights

my = (12)Mn, + n,), (6.472)

my = n, — ny). (6.47b)

Comparing with Eq. (4.7), we find n, = A, and
n, = A, as anticipated.

One may also look for the highest state in the

Bargmann-Moshinsky scheme.”” We need the op-

20 T am indebted to Professor Moshinsky for discussions
and correspondence on his treatment of SU ;.



CLASSIFICATION OF PARTICLE STATES

erators C;; defined by Eq. (4.10). They are given in
terms of the a’s and b’s by the expressions

Ci; = blb;, — ala.. (6.48)

Equations (4.11) and (6.32d) have as their solution
the state given by

l9:9295) = (@)™(b)"™ |0) (6.49)
with
g1 = T, g = 0, gz = —n,. (6.50)
Therefore k, and k, have the values n, + n, and =,
respectively.

It is now possible to proceed from the state |g.g.9s)
to all other states within the representation by
successive applications of the C,; with ¢ > j. The
process is similar in spirit to the familiar “raising”’
and “lowering”’ operations applied in the theory of
angular momentum. It is, however, considerably
more complicated since one has to deal with several
different shift operations. An extensive discussion
of the entire process has been given by Moshinsky
in a series of papers concerned with the construetion
of polynomial representations for SU,.'* Although
his particular polynomials differ from the ones re-
quired here due to a different realization of the C,
the underlying algebraic structure is the same. Thus,
there already exists a complete prescription for
construeting all the states in SU,, and our problem
is, in prineiple, completely solved.

We shall limit our further discussion to the con-
struction of a restricted subset of SU, states. In
that circumstance it is still convenient to proceed in
a rather more pedestrian way. We shall stop for the
moment with the states for X = 4. They are given
by the expressions

140 44) = (a})* |0),
140 22) = a'-a'(a})? |0),
140 00) = (a'-a")* [0),
31 44) = (a})b; 0),
31 33) = (a1)*(a" xb"), |0),
31 22) = (5a'-a'ab; — 2a"-b'alal) |0),
31 11) = a"-a'@@’ xb"), [0),
|22 44) = (a})*(b1)* |0},
22 33) = ajbi(a’ xb"), |0),
[22 224) = [5(a’-a'b]b] + b'-b'alal)
— 8a"-b'a;b]] 0),
22 22—) = (a'-a'blb] — b'-b'alal) [0),
22 00) = [2a"-a'd"b" — (a'-b")*] [0).

(6.51)

I
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We see that the states withn, = 2,n, = 2,and j = 2
are doubly degenerate as predicted by Table I.
In accordance with our previous discussion, we may
break the degeneracy by application of the operator
©. However, in this instance it is more convenient
to employ a different operation, the interchange of a
and b. The vectors chosen above are eigenvectors
for the interchange operation with eigenvalues 1.
It should be remarked at this point that it may be
best to avoid the use of Q or @’ wherever possible, for
their eigenvalues are in general irrational. That is,
the eigenvalue equations for Q are algebraic equations
whose order is equal to the degeneracy and whose
solutions, in general, cannot be expressed in closed
form.*

C. Explicit Angular Wavefunctions

We shall now find the explicit angular wave-
functions for the harmonie oscillator states obtained
so far. As discussed earlier, these angular functions
are those needed for the SU, classification of three-
particle states.

The harmonic oscillator states are of the general
form

Inamji.) = P@', b") [0), (6.52)
where P is a polynomial in a' and bt. It is first neces-
sary to undo the canonical transformation (6.21),
P@', by = P27¥B' + A", 2B — iA"Y]. (6.53)
Following our previous discussion, the desired angu-
lar functions g are now given by the expressions
g = S e+%r’<r(l)’

1| P28 + A", 278" ~ AN |0). (6.59)
The matrix element obeys the simple relation
@@, r®| Pl27iB' + iA"), 274B" — A")] |0)
=cePE® 4+, 1® — i), (6.55)

where ¢ is an immaterial constant. To see this, we
note that it is composed of a sum of terms of the
general form

@ P A) B 10) = c e Heo (i) Heur!?),
(6.56)

where He,, denotes the Hermite polynomial of order
m.** The leading term in He,(z) is ™. By construc-

. ® Various aspects of the situation have recently been
discussed by G. Racah, Proceedings of the Istanbul Inter-
national Summer School, 1962 (Gordon and Breach, New
York, 1965).

2'W. Magnus and F. Oberhettinger, Punctions of Mathe-
Ezgast‘zéal Péhgsics (Chelsea Publishing Company, New York,
, p. 80.
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tion, P is a homogeneous polynomial of order A\,

Ploz, ay) = o' P(z, y). (6.57)
Therefore,
@V, r?| Pl27iB" + A", 271B" — AN |0)
= ce P PE? + i, 1 — i) + P, (6.58)

where P’ is a polynomial of lower order in r. But by
Eq. (6.28), the radial part of the wavefunction must
contain only an exponential multiplied by r*. This
result followed upon imposition of Eq. (6.32d).
Therefore P’ vanishes identically, and we obtain the
simple relation

g = e PE® 4 iV, 1P — i), (6.59)

There remains the algebraic task of converting
our results to Dalitz—Fabri variables. We shall
illustrate the process for a few of the lowest states.

The lowest state is |00 00). In this case, g is simply
a constant. The next state is |10 1 m). Using Eqgs.
(6.39) and (6.59), we find

g(10 1m) = r (@ + V),
— T—l nm'(r(Z) + ir(l)), (660)

where n,, denotes a member of a triad of space-fixed
spherical unit vectors,

n, = —27¥n, +in,), 0, =n,, (6.61)
no, = 27¥n, — in,).
The normalization is
N, N, = (—1D" 8. . (6.62)

We shall also need a spherical body-fixed triad de-
fined by

—274e, + ie,), € = e,

e, = 27i(e, — e,).

€ = (6.63)

Let I be the unit dyad composed of the unit vectors
€,

I =2 (—1)e.en. (6.64)

Equation (6.60) can now be written in the form
910 1) = 1 3 (—1)mn e e (P + ir™).
T (6.65)

Let ® be that rotation which takes the space-fixed
triad into the body-fixed triad,
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e.=@®n, i=123. (6.66)

The scalar products n,,. -e_,, are related to the spher-
ical matrix elements of ®. One finds
(_ l)mnm' ‘e, = D:nt’m(aﬁy)x (667)

where «, 8, and vy denote the three Euler angles
parameterizing ®.* Combining Egs. (6.65) and
(6.67), we may write

9(10 1m’) = %

> DLn(aBy)en & + ™). (6.68)

m

The scalar products e,-(®® + ir”’) can be
evaluated by using the position-space analog of
Eqgs. (5.11). Thus,

e @™ + ') = —27%(cos ¢ + sin ¢) e,
e 4 ') =0, (6.69)
e, ® +ir'’) = 27 (cos ¢ — sin ) e'*.
Inserting Eqgs. (6.69) into Eq. (6.68), we find
910 1m) = —27}(sin ¢ + cos ¥)Dy.1(aBY)

+ (sin ¢ — cos Y)Dy 1)) . (6.70)

A similar calculation may be carried out for the
|01 1m) state.

We continue with the state |11 lm). By Egs.
(6.40b), (6.59),

g1 1m) = r’n,-@® + ) x @¢® — V). (6.71)
Inserting the unit dyad as before, we find
g(l1lm’) = 1—2 > D) @ 4 ir") x (@ — i),
r m Id
(6.72)

In this case there is only one nonvanishing scalar
product,

et + ) x@?® — ') = i’sin2¢.  (6.73)
Therefore,
g(11 1m) = 7 sin 2¢DY(aBy). (6.74)

The angular momentum 2-state for the same repre-
sentation, |11 2m), has for its g the expression

g(11 22) = v [0y, (@ + r)][n,,-@® — a)].

(6.75)
2 We use the notation and conventions of M. E. Rose,

Elementary Theory of Angular Momentum (John Wiley &
Sons, Inc., New York, 1957).
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TasLe II. SU; states for A < 3.
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A 7la 2 i g(nanjm; poafly)
Q 0 0 0 Constant
1 1 0 1 —1/2%(sin ¢ + cos ¥)D™,; + (sin ¢ — cos ¢) DV, _jlefte
1 0 1 1 1/2¥(sin ¢ ~ cos ¥)D1*,, ; + (sin ¢ + cos ¥)D*,, e i1#
2 2 0 0 pe
2 0 2 0 pei
2 2 0 2 H(1 + sin 20)D s — 2p/63D%%, 4 + (1 — sin 20)D?*,, _,Je%
2 0 2 2 (1L — sin 2¢)D%,5 — 2o/61D%, o + (1 + sin 20)D%, _jle~i#
2 1 1 1 isin 2uDt%,,
2 1 1 2 HoD% 2 ~ 2/63D% 5 + pD% o]
3 3 0 1 —1/2%[(sin ¢ + cos ¥)D™a,1 + (sin ¢ — cos @)D, _]etd
3 0 3 1 1/2%[(sin ¢ — cos ¥)D¥™, 1 + (sin ¢ + cos ¢)DY™,, _jJe—it
3 3 0 3 —1/8{(sin  + cos ¢)2D¥*,, 3 — (3/5)p(sin ¢ + cos ¢)D¥,, ,
—(3/5)4p(sin ¢ — cos Y)D¥™, 1 4 (sin ¢ — cos ¢PD3, _jleit
3 0 3 3 1/84(sin ¢ — cos ¢ D%, 5 — (3/5)(sin ¢ — cos Y)D3%,, ;
—(8/5)%p(sin ¢ + cos ¢)D¥*, _1 + (sin ¢ + cos ¥)2D¥*,, _ le~its
3 2 1 1 1/28{[(2e + V)sin g — (2p — 1) cos ¥1D%™n,1 + [(2p + 1) sing + (2o — 1) cos y1D¥,, _, jeitd
3 1 2 1 —1/24{(2p + 1)sing + (2p — 1) cos ¢} D™ +[(2p + 1) sing — (20 — 1) cos gD, _ije—ité
3 2 1 2 ~i/2H[(sin ¥ + cos ¢) sin 29)D%, 1 + [(sin ¢ — cos ¢) sin 2¢) D™, ., Jeite
3 1 2 2 7/24[(sin ¢ ~ cos ¢) sin 2¢]D,, 1 + [(sin ¢ + eos ¢) sin 291D, _ ]e~ils
3 2 1 3 g(20 22y X ¢(01 11)
3 1 2 3 g(10 11) X g(02 22)

This time it is necessary to insert two unit dyads.
Thus,

g(11 22) = ;1— 3 Dlien-t® + ™)

X Dl @@ —ir'?), (6.76)
or
g(11 22) = ¢{10 11)4(01 11). ®.77

The product of the two D’s may be reduced with the
aid of the Clebsch-Gordan series,”

imDim = C(112; 112)
X C(112;m, m', m + m")D3 pem-. (6.78)
Therefore,
g(11 2m) = 3[pDi(aBy) — (2/61)DioeBy)
+ oD o(eBY)].  (6.79)
The remaining wavefunctions can be found by
similar calculations. Explicit results are listed in
Table II for A < 3. The states for A = 4 are too
complicated for easy tabulation, but can be easily
found when necessary using Eqs. (6.51). None of the
functions are normalized. The proper normalization

is easily obtained with the aid of Eq. (5.22) and the
relation

262 — oF) = ‘/; i z daJ (z2)] (yz). (6.80)

It is possible to show that all the j = 0 wavefune-
tions can be expressed in terms of Jacobi poly-
nomials. The first step is to observe that certain key
states can easily be found explicitly. For example,
the state (2,0 00) is given by

.0 00) = (a'-a")™ (o), (6.81)
and

g(n,0 00) = pi* giinee, (6.82)

Equation (6.32d) is evidently satisfied. Suppose,
now, that we know the polynomial in a' and b' cor-
responding to the state |n,2,00). The polynomial
for the adjacent state, (n, + 2, n, + 2, 00), must
be composed of a linear combination of the terms
from that of the previous state multiplied by pairs
of a%’s and b"’s. This process of passing from a state
to the adjacent state is completely specified by the
orthogonality requirement

[ 7*02.00560mi00)0 dp db = ¢ 80 50 (6.83)

It is thus possible to obtain all the states starting
from the known key states by essentially employing
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the Schmidt orthogonalization procedure.”*'** The
recursion relations so obtained are identical to those
for the Jacobi polynomials. Using one of the standard
notations,”® one finds

g(n.n,00) = eiﬂ"a‘m)d’p’gr(a +1,04+1, Pz); (6.84)

where
(6.85)

(6.86)

- nbl)

T = i, + n — 20).

c=1%n,

The method just outlined ean also be used to find
all the j = 1 wavefunctions in terms of Jacobi
polynomials. The procedure is more complicated,
however, and requires the use of the Christoffel
formula.”” We shall therefore not pursue the matter
any further here. .

Our discussion so far has been concerned with the
construction of spatial wavefunctions. We may sum-
arize our results by saying that we have found
states [p® p; n.nyjj,) with the spatial wavefunctions

<r(l)r(2)r(3) I p(3)p;na,nb]'m>
=ce™ " 17 o ime 2@ im; pdaBy), (6.87)

where ¢ is a normalization constant. The functions g
have been determined for n, + n, < 4 and for all
values of n,, n, when § = 0.

For many applications, it is equally important
to have momentum-space wavefunctions,

'@
Y

1t p® | p®p; nanyjm).

They are easily calculated for SUs states. The ex-
ponential and radial wavefunctions are replaced by
momentum and energy delta functions. By Eqgs.
(2.1), (2.5), and (2.6), the operators A;; out of which
L, has been constructed treat momentum and posi-
tion operators on an equal footing. Consequently,
the “angular’ functions g remain unchanged. It
is only necessary to replace the position Euler angles
and position Dalitz—Fabri coordinates by their
momentum counterparts. Therefore,

<p(1)’p(2)'p(3)’ l p(a)p;nanbjm>

, 6 72 _ 2 .
=¢ &0® —p¥) _(p_ﬁ_g_) gnajm; pbofy),

(6.88)

# F. Riez and B. Sz.-Nagy, Functional Analysis (Frederick
Ungar Publishing Company, New York, 1955), p. 67.

% The j = 0 solutions can also be obtained by a direct
separation of variables for the j = 0 Schrodinger equation.
See V. Gallina, P. Nata, L. Bianchi, and G. Viano, Nuovo
Cimento 24, 835 (1962).

28 Reference 22, p. 83.

27 (., Szegd, Orthogonal Polynomials (American Mathe-
matical Society, New York, 1959), p. 28. :
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where p, ¢, a, 8, and ¥ now denote momentum Dalitz~
Fabri coordinates and momentum Euler angles. We
see that SU, states are particularly well adapted
to situations requiring a simultaneous knowledge of
correlations both in momentum and position space.

D. Symmetry Properties of SU, States

We close this section with a discussion of the
properties of SU, states under the operations of
parity and the permutation group S;. By Eqs. (6.12)
and (6.20), the operators at and bt change sign under
spatial inversion. Therefore, the spatial parity of a
general SU; state is given by (—1)""". According
to Table I, states with 7 = 0 can only occur for even
values of n, and n,. Thus, all j = 0 states have even
spatial parity. Similarly, the j = 1 odd-odd states
have even parity while the odd—even states have
odd parity. :

To study the effect of the permutation group, it is
only necessary to consider the transposition @,
and the cyclic permutation €. By the unitary analog
of Eq. (1.25) and Eq. (6.31),

3xi(ns—na)

€ {nnyjm) = e N, jm). (6.89)

Therefore, the only effect of a cyclic permutation is
multiplication by a phase. Using Eqs. (1.21) and
(6.12), one sees that ®;, changes the sign of At while
leaving B' unaffected. Inserting this information
into Eq. (6.20), we find that @, interchanges the
roles of a* and bt. Thus, since n, and n, are the Cartan
indices, ®,, maps a given representation of SU; into
its conjugate representation. By Egs. (1.48a,b),
the value of J is unchanged while K changes sign.
Therefore, if we denote a general state by |n.n,jme)
where o is the eigenvalue of the operator @ = J-T-J
necessary to break the degeneracy deseribed in Sec.
4D, we find

@12 In.,n,,j‘mw) = [nb’n.,jm - w). (690)

Alternatively, in the case of a self-conjugate repre-
sentation, we may use ®,, to lower the degeneracy
as was done in Eq. (6.51).

5. THE EMBEDDING OF SU; IN O,

By Eq. (2.14), the Casimiro perator for g’ can be
completely expressed in terms of elements contained
within L,. We shall now explore the consequences
of this result for representations of G’ carried by
three-particle states.

The Lie algebra L, of -G’ is simple. It is, in fact,
isomorphic to the Lie algebra of the group of unitary
unimodular 4 X 4 matrices, SU,. We shall therefore
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use the Cartan procedure to classify its representa-
tions. The first step is to bring L, into Cartan normal
form. Let e; be a third unit vector orthogonal to the
vectors e, and e, defined in Sec. 4A. We define six
more root vectors by the equations

5 = —le, + (2'/3)e;,
g = +[2(3&)]_lex + e + (2}/3)93: (7.1)
(= —[26Y]%e, + e, + (2!/3)es,

and their negatives. These vectors, along with those
defined by Eqgs. (4.1) and their negatives, provide
the twelve root vectors for the Cartan normal form of
0, or SU,* We also define six more operators by
relations similar to Egs. (1.45) and (2.15),

V" — %éi,'k(Aik — A,‘+3,k+3)1
W‘. = %G.‘,‘k(AJ‘.k'Hi + Ai+a.k))

The six ladder operators corresponding to the root
vectors (7.1) are now given by the expressions

E(£38) = 47V, £ W),
E(xe) = 8)7V, — W, £ i(W, + V,)],
E(£D = @87V, + W, &= i(W, — V,)].

1< 3. (7.2)

(7.3)

Finally, the third commuting operator is
H, = (18)7%3. (7.4)

The 15 operators of Egs. (4.5), (7.3), and (7.4) to-
gether form the Cartan basis for L.

Let [m;m.m;) denote the state of highest weight
for a given representation of L,. We have the rela-
tions

H, ’m> =m; lm>: t=1,2,3; (7.5)

and

E(y) [m) = 0, (7.6)

where u is one of the 6 root vectors e, 8, —vy, —3, ¢,
and —¢. Equation (7.6) follows from the stipulation
that |m) be the state of highest weight, for if Z(y) [m)
did not vanish, it would be a state of still higher
weight. In the Cartan basis, Eq. (2.14) takes the form

G[i Hi + w}s:u‘ E(y)E(—v)}
= 12[2?: H + w:Z,U’ E(v)E(—v)] - 6H;. (1.7

28 The end points of the root vectors for SU, (or Os) lie on
the vertices of a cuboctahedron. See H. 8. M. Coxeter, Regu-
lar Polytopes (The Macmillan Company, New York, 1963),
plate 1. Fig. 9.
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Now apply both sides of Eq. (7.7) to the state of
highest weight. Using Eqgs. (7.5, 6) and the commuta-
tion rules (4.3), one finds
2*m3> _

3 )= 0. (7.8
The highest weight for SU, or O, is given by a
formula analogous to Eq. (4.7),

2} — (o + ) — (T = 2 4

m = jnGle, + e, + 27%))
+ In(3Ye, — e, — 27%e,)
+ I(3le, + e, — 2fe),  (7.9)

where A,, X\;, and A; are arbitrary nonnegative
integers. Thus, Eq. (7.8) implies the relation

O\ + )‘2)0\1 + A 2) + 42 =0 (710)

among the Cartan indices. Since the indices cannot
be negative, we must have \; = A, = 0. Therefore,
the representation of Os or SU, carried by three-
particle states can have only one nonzero index, As.
Applying the expression for A® in the Cartan basis
[the left-hand side of Eq. (7.7)] to the state of high-
est weight, one finds

)\3 =\ = Na + ny. (7.11)

We may summarize our results by saying that the
spherical polynomials for the sphere embedded in
six-dimensional Euclidean space can be put into
one-to-one correspondence with the irreducible
representations of SU,.*

8. APPLICATION TO THREE-BODY DECAYS

As an example of the utility of SU, states, we shall
treat the decay process K* — 7% + =% + =~. For
simplicity, we shall assume that the K meson has
spin zero and that a Al = % rule is in force so that
the three pions have I = 1.

The treatment of isospin is facilitated by the intro-
duction of isospin creation operators «f, gt, ¥* which
create the isospin states for particles 1, 2, and 3,
respectively, when acting on an isospin vacuum
state, |vac). A linearly independent set of I = 1
states is easily seen to be o'gt-y' |vac), 3ty a' |vac),
and ylaf-g" |vac).

To enforce Bose statistics, we shall need isospin
states of definite symmetry. Under the cyclic permu-

2 The construction of spherical harmonics which trans-
form irreducibly under Os but carry pieces of several repre-
sentations of 8U; can be carried out by a direct separation
of variables in the three-particle Schrodinger equation. For
this, one takes as diagonal operators J.,®) = §(J, + V),
J.® =T, — V,),Jw, J@e, and A% See ref. 3, and Z.
Koba, Acta Phys. Polonica, 22 (Suppl.), 103 (1962) and
references cited therein.
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tation €, we have of, 8!, and v* — @', ¥, and of,
respectively. We therefore introduce states |s) with
s = 0, &1 by the prescription

0) = (15) a8’y + 6y ¢’ + v'e’-8"] vac),
1) = 67 gy
+ e gy o + y'e'8] [vac),
ls=—1) = 6 e i a'B -y’
+ e gy e’ + v'a’ 8] [vac).  @B.1)

It is easily verified that the new states are ortho-
normal,

ls

ls =

<S, IS) = 5,!,,

and satisfy the relation

(8.2)
e ls) = e |s). 8.3

Under the transposition ®,,, ¢! <> ' and y' < v, s0
that

@12 IS) = ]——8) (84)

By combining isospin space and momentum space,

we may write an arbitrary three-pion (I = 1 and
7 = 0) state in the form
Br) = 2 duws [nan) Is), 8.5)

na,nh,8

where we have used the shorthand notation |n,n.)
for the SU, states [p®'p; n.n,j = 0 m = 0). If we re-
quire Bose statistics, the 37 state must be invariant
under both @;, and €. Combining Eqs. (6.89), (6.90),
(8.3), and (8.4), gives the relations

doeny = s (8.6)
and
dn.n, SIn 37(n, — n, + 8) = 0, 8.7
or
o, = 0 (8.8)
unless

8.9)

Turning to the specific-problem of K* decay, we
employ an S matrix formalism and write

n, — n, -+ s = 0 modulo 3.

—% (S — 1) |K*) = |37) + other decay modes, (8.10)

where the 3= state has the expansion given in Eq.
(8.5) subject to the conditions (8.6) to (8.9). The
probability amplitude A for the three emitted pions
to have coordinates p and ¢ on the momentum
Dalitz plot and charges (4-+ —) is given by

ALEX DRAGT

= (++—pl 5 (S — 1) |K*)

= 2 Grunlpd | R )X+ +— | 8),

naghbe

8.11)

where the (p¢ | n.n,) are the functions g(n.n,jm;
ppaBy) of Sec. 6C with suitable normalization and
|4 -+ — ) denotes the isospin state in which particles 1
to 3 have the charges (44 —) respectively. One
easily finds from Eq. (8.1) that

(++—|s =0y = 20157,
(++—|s = *1) = —67%,

(8.12)

In K decay, the kinetic energy of the pions is
about 75 MeV, so that by Eq. (5.2),

(8.13)

P~ m,.

If we assume that the pions are essentially produced
within a volume of radius R, we may conclude that
SU,; states with large values of A are very unlikely
to be produced since the spatial wavefunctions are
of the form (6.87) and J,.. vanishes strongly at the
origin for large values of A. Our argument is simply
a generalization of the notion of a centrifugal barrier.
We shall therefore retain only those terms in Eq.
(8.11) for which A < 2 to obtain

A~ 2[(15m) He — 2[B3r) H)fp cos .  (8.14)

Here we have inserted normalized expressions for the
g'sand set e = d, and f = d,5 = di,. Neglecting |f|®
compared to |e|?, the decay distribution is given by

[A]® = 4(15m)7" |e” [1 + 2(5Hhp cos ¢], (8.15)
where
h = —Re (f/e). (8.16)

Comparing with experimental data, we find A=0.06.>
We conclude that the pions are produced almost en-
tirely in the SU, state with A = 0 as anticipated
by the centrifugal-barrier argument.

It is of interest to ask what value of R for the radius
of the production volume leads to a value of 2 with
the observed magnitude. We may implement the
notion of a production volume by using the function

~"/% and setting

© ® -1
~ f drr e—'/RJf(pr)lif drr e"’RJ;f’(zrr):l
0 0

(8.17)

% M. Ferro-Luzzi, D. H. Miller, J. J. Murray, A. H.
Rosenfeld, and R. D. Tripp, Nuovo Cimento 22, 1087 (1961).
The avalla,ble data for K decay is not yet sufficient to detect
terms in the matrix element going as p%.

@I“—k
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One finds

‘Zl ~ 4.6(pR)’, (8.18)
or, using Eq. (8.13),

R~ (4m))™". (8.19)

This value for R is quite in keeping with one’s
physical intuition.

ACKNOWLEDGMENTS

I am indebted to Professor V. Bargmann, Professor
M. Moshinsky, and Professor F. Dyson for helpful
discussions, and to Professor J. R. Oppenheimer for
his kind hospitality at the Institute for Advanced
Study.

APPENDIX

For the general mass case, it is convenient to
introduce the quantities

M= (m1 + my + ms); (Al)
]
o= (25). @)
]
4 = (o)’ (43)

c =3t

(A4)
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The definitions for p* to p® and r’ to t™ pre-
viously given by Egs. (1.13) and (2.2) now take the
general form

@ _ G _ql_t_(li>
p = Cu d3<m3 m, + My ] (A5)
p(s) = (1/02)(‘11 4+ q: + qa),
and
r'V = (1/cds)(x> — 11),

= (CZ/ZW)(mlrl + myr; + mars).
The total energy takes the form

4 G

q_i_}_ s (2)7 _Ci (3)1
e M F e e )t (A7)

ms

80 that O invariance and all its consequences still
hold. The generalizations of the remaining equations
are straightforward. In particular, Eqs. (6.11) re-
main unchanged. For further details, the reader is
referred to the original work of Smith.* In this
connection, it should be noted that the definitions
employed here sometimes differ from those of Smith
by factors of c.
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The Ising model has been employed in a study of the variational principles which are associated
with renormalized diagram expansions in statistical mechanics. For this model the variational func-
tional is expressed in terms of the renormalized semi-invariants, which play the role of the one-particle
density or the one-particle Green’s function in quantum statistics. We review the derivation of this
functional and discuss some of its properties. In order to examine the mathematical content of the
variational principle in more detail, we specialize to the exactly soluble infinite-dimensional (infinite-
range) model. We find that, by virtue of the Dyson relation, the variational theorem is not valid
over all possible values of the renormalized semi-invariants but applies only within a restricted do-
main. Within this domain the variational functional is multiple valued. The renormalized expansion
is asymptotically convergent to the branch of this functional which describes a single phase with

uniform magnetization.

1. INTRODUCTION

HE most successful approach to a description
of phase transitions, so far, has been based on
exactly soluble models. This method yields rigorous
results, but usually cannot be extended beyond the
limitations of each model. In particular, it is very
difficult to draw any conclusions about real systems.
On the other hand, the use of approximation
methods in the case of phase transitions is made
very difficult by the nonanalytic behavior charac-
teristic of these phenomena. Of course, one can hope
to find practical methods of approximation, such
as rapidly convergent expansions, only for the
evaluation of functions or functionals having a
simple analytic behavior. The fundamental problem
is then to find mathematical mechanisms through
which the nonanalyticity associated with the phase
transition may be generated from essentially an-
alytic quantities.

The standard low-density expansions of statistical
mechanies obviously diverge in the case of phase
transitions. From physical arguments, on the other
hand, one has a feeling that the methods based on
the equations relating the distribution functions, or
the Green’s functions in quantum statistical me-

* Supported in part by the National Science Foundation.

t Almost all of this work was performed at the Physics
Department of Carnegie Institute of Technology during the
fall semester, 1963.

chanics, may be applicable to dense systems and
may serve as a basis for a discussion of phase
transitions.

A convenient way of generating such systems of
equations is provided by the variational principles
which follow from the renormalized diagram expan-
sions." In classical statistical mechanies, this method
is based on the expression of In Z as a funciional
of the density n(r), or of the density and the cor-
relation function €(r, '), which goes through an
absolute maximum at equilibrium.” In quantum
statistical mechanics, the corresponding funetional
may be only stationary at equilibrium. In all cases,
the stationarity eonditions provide a system of equa-
tions for the determination of n{r), or of n(r) and
€(r, "), and therefore also of In Z.

The functional representing In Z in these methods
is given by an infinite expansion which necessarily
must be truncated in any practical calculation. The
purpose of the present work is to examine the math-
ematical nature of the approximation methods based
on these expansions by applying them to a simple,
exactly soluble model. We have used therefore the
infinite-dimensional Ising model discussed by Tem-

I For a review of these methods and detailed references,
see C. Bloch in Studies in Statistical Mechanics, edited by
J. de Boer and G. E. Uhlenbeck (North-Holland Publishing
Company, Amsterdam, 1964), Vol. 111

2 T, Morita and K. Hiroike, Progr. Theoret. Phys. (Kyoto)
25, 537 (1961).
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perly and others.® This model, in spite of the extreme
simplicity of its exact solution, exhibits a kind of
phase transition characterized by the appearance
of a spontaneous magnetization below a certain
critical temperature (Sec. 5).

Perturbation expansions for Ising models have
been developed by Brout,* Englert,® and by Horwitz
and Callen.® They involve the so-called semi-in-
variants M,.; (n = 1,2, --- ; 7 denotes the various
spins of the system), which replace the density n(r)
of classical statistical mechanies, or the one-particle
propagator of quantum statistical mechanics. The
variational expression for In Z appears then as a
functional of the renormalized semi-invariants M, ,
(Sec. 2). For studying the general properties of
these functionals, it is convenient to introduce ficti-
tious external fields whose variations induce varia-
tions of the M, ; (Sec. 3). The field corresponding
to the first semi-invariant M, ; is similar to a mag-
netic field. The consequence of the physical nature
of this field is that In Z, considered as a functional
of the M, only, is a concave functional going
through an absolute maximum at equilibrium. Also
the magnetization curve giving > _; M,; in terms
of the external field is necessarily a monotonically
increasing function. These calculations do not extend
to the general functional depending on all semi-in-
variants M, ; which correspond to the introduction
of unphysical fields resulting in nonpositive-definite
probability distributions. It will therefore be par-
ticularly interesting to discuss the various approx-
imations to the reduced functional of the M, ; ob-
tained by substituting into the general functional
the stationary values of the M, ;, M, ;, --- . The
reduced functional should be concave.

In the infinite-dimensional model, the contribu-
tions of all individual renormalized diagrams vanish
in the limit N — o, except one of them (Sec. 6).
This one gives a functional of M, which is identical
with the molecular field approximation. It is not
a concave functional, however, when the phase
transition takes place, although it is exact outside
the two-phase region.

As a first investigation into the nature of this
difficulty, we have summed a particular infinite
family of diagrams—the ring diagrams—for finite N,
and carried out the limit N — « only after solving

3H. N. V. Temperley, Proc. Phys. Soc. (London) A67,
233 (1954). Very complete discussions of this model have been
given by 8. Katsura, Progr. Theoret. Phys. (Kyoto) 13, 571
(1955) and N. Saito, J. Chem. Phys. 35, 232 (1961).

* R. Brout, Phys. Rev. 115, 824 (1959).

5F. Englert, Phys. Rev. 129, 567 (1963).

¢ G. Horwitz and H. B. Callen, Phys. Rev. 124, 1757
(1961).
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the variational problem with respect to the semi-
invariant M,. (Higher semi-invariants do not appear
in this approximation.) This procedure indeed gives
a different reduced functional of M, in part of the
phase transition region, in spite of the fact that
each ring diagram individually gives a vanishing
contribution as N — . The resulting functional
is still not exact and nonconcave in the two-phase
region.

Summation of still larger families of diagrams
(Secs. 7 and 8) does not produce further improve-
ments of the reduced functional of M, in the same
way as the ring diagrams. An unexpected aspect
of the problem, however, becomes important. As a
consequence of the Dyson relation, the renormalized
semi-invariants M,, M,, --- turn out to satisfy
inequalities defining a restricted domain of variation.
This restriction excludes precisely the region where
the molecular field approximation is wrong. An even
more surprising development is that the functional
to which the variational theorem applies turns out
to be multiple-valued in the allowed domain. The
perturbation expansion determines directly only one
branch of this functional.

The same analysis yields some information con-
cerning the convergence of the expansions. This
convergence, in the infinite-dimensional Ising model,
is at best an asymptotic convergence for N — o,
This type of convergence disappears below the crit-
ical temperature for the unrenormalized expansion,
whereas the renormalized expansion remains always
asymptotically convergent, and converges to one
branch of the correct functional provided the values
of the M,, M,, - - - stay within the permitted domain
of variation mentioned above.

The conclusion of this paper is to suggest a
prescription for the calculation of the complete
reduced functional: use the renormalized expansion
in the region defined by the constraint (correspond-
ing to a unique uniform phase), and deduce the
functional in the remainder of the domain of M,
(the two-phase region) by taking the concave en-
velope of the functional. How far this conclusion
can be extended beyond the particular model treated
here remains, of course, to be seen.

2. DIAGRAM EXPANSION FOR THE
ISING MODEL

2.1 Elementary Rules

The partition function for the Ising model in the
presence of an external field X,/ is given by

Z = Z exp (g Zv.‘i#illi + Z X.’Pa’); (2-1)

tr)
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where {u} (u; = 1,7 = 1,2, -+, N) denotes the
set of N spin variables of the system.

We consider first the expansion of Z in powers
of the interaction v;;, The result may conveniently
be deseribed by means of diagrams consisting of an
arbitrary number of points labeled <, 4, &, --- and
bonds joining pairs of points. The factors associated
with the elements of a diagram are (see Appendix A):

Bv;; with each bond between points 7 and j;
M? . with each point ¢ at which » bonds arrive,
where the quantities

M,‘:'; = (d/dX,)"lnz COSh X{

are the so-called semi-invariants.

2.2

The contribution of a diagram is obtained by
carrying out independent summations over the in-
dices 7, §, k, --- from 1 to N and multiplying the
result by the weight 1/S where S is the symmetry
number of the diagram.

Then In Z is the sum of In Z, and the contributions
of all connected diagrams, where

InZ, =Y exp (> Xw)l = Y In2cosh X,
[} 1 i
(2.3)

is the logarithm of the partition function in the
absence of interaction.

A point ¢ in a connected diagram is called an
articulation point if the diagram splits into two or
more disconnected parts when this point is removed.
The points 4, j, k on the diagram of Fig. 1, for
instance, are articulation points. If we call a star
any subdiagram which cannot be split into two dis-
connected subdiagrams by the removal of a single
point, we see that the various articulation points
of a diagram define the structure of a tree of stars.
On the diagram of Fig. 1, the triangle ¢, j, &k is
a star; two other stars are attached to each of the
points 7 and j; one additional star is attached to £.

2.2 Renormalization

We now consider the partial resummation ob-
tained by attaching all possible subdiagrams to all

Fic. 1. A diagram containing three
articulation points.

C. BLOCH AND J. 5. LANGER

the points of a given star considered as a skeleton.
Let us call G, ; the sum of the contributions of all
proper subdiagrams which are connected to 7 by
p bonds. The term “proper” implies that ¢ is not
an articulation point of G, ;. Consider a point 7 of
the skeleton star at which n bonds arrive. We can
attach to this point n, proper diagrams of G, ;, n,
of G, ;, ete. - - - . The total number of bonds arriving
at 7 is then

n+n + 2n, 4+ 3ng 4 -

The total contribution of the skeleton star after
this resummation has been performed is therefore
obtained by associating with every point ¢ at which
n bonds of the skeleton arrive the renormalized
semi-invariant

1

e (G )™
By et nl!ng! et (’l')

X (@)™

]t{,,',' =

2.4)

0
- Mn+n,+2n:+"'.'37

where n,! n,! --- is the supplementary symmetry
factor introduced by the presence of identical factors
GL;', GZ,{, TR .

The relation (2.4) is the equivalent of the Dyson
relation. It expresses the renormalized semi-invar-
iants (which correspond to the exact propagators
of quantum statistical mechanics) in terms of the
unperturbed ones and the G, ; (which correspond
to the self-energy operators’).

The relation (2.4) takes a simpler form in terms
of the generating funciions for the semi-invariants:

n

Mz = f: 1

2
Fanl

Mﬂ.iy
2.5)
M) =3 5—' M. = In2 cosh (X, + 2),

n=0Q 'Y

where we have used (2.2). Then (2.4) may be written

© »

M) = [exp > G(S;) ]M?(z). (2.6)
p=1

The bracket here is a symbolical representation of

an integral operator; and this relation is actually

equivalent to

e = [ K-, @

7 This analogy suggests an interchange of the notations
M, and G,. We have, however, kept the notation commonly
used in this subject.
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where

1 +i©

K(z—-2)==— dx

2wt

X exp [x(z —2)+ 2 x”G,,,,-]. 2.8)

The relation (2.6) or (2.7) takes its simplest form in
terms of the Fourier transforms of M ;(z) and M{(z):

M (z) = M) exp [i x”Gp..-], (2.9)

p=1
where

@ = [ e d,
—e (2.10)

Miz) = f_m e M(2) da.

In these relations, x should be taken purely imag-
inary.

2.3 Variational Principle

Let us return now to the evaluation of the con-
tribution of all closed connected diagrams. It is clear
that by starting from all possible skeleton stars,
and by attaching at all their points all possible sub-
diagrams in all possible ways, we shall reconstruct
all closed connected diagrams. Each diagram, how-
ever, in this process appears a number of times equal
to its number of stars. It is easy to correct this
overcounting of diagrams by making use of the
topological relation valid for any tree of stars,

N,—N,+N.=1, 2.11)
where N, is the number of stars of the diagram,
N, the number of articulation points, and N, the
sum of the indices of all articulation points (the
index of an articulation point being defined here
as the number of stars attached to it).

Let us then call D{M,, ;} the total weighted
contribution of all diagrams consisting of a single
star, computed with the renormalized semi-invar-
iants M, ,. We have seen that each tree of stars
in the complete perturbation expansion of D{M, ;}
appears N, times. On the other hand, if we consider
the corresponding expansion for the expression

> G.M, (2.12)
it is easy to see that each tree of stars diagram ap-
pears N, times. Finally, in the expansion of
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maonin! -

= Mu,"; (2‘13)

each tree of stars appears N, times. The notation
M, ; for the expression (2.13) has been introduced
in view of its identity with (2.4) when n = 0.

It follows now from (2.11) that the functional:

3){Mn.i} - ZGn,iMn,i + ZMO.i
' 2.14)

'I’{Mn,i} =

becomes equal to In Z when the exact equilibrium
values are substituted for the M, .. Moreover,
®{M, ;} is stationary around the equilibrium values
of the M, ;:

0%/9M.. . = 0. (2.15)

This follows from (2.4), (2.13), (2.14), and the
relation

G,... = dD/OM, ;, (2.16)

which follows immediately from a comparison of
the diagram expansions of both sides.

The stationarity condition (2.15) provides a set
of equations for the determination of the equilibrium
values of the M, ;. Substitution of these values into
(2.14) yields the value of In Z corresponding to
each approximate expression used for the functional
O{M, .}

3. CONVEXITY CONDITIONS

In some cases, the functional & is not only sta-
tionary, but goes through an absolute maximum
at equilibrium. This holds quite generally in classical
statistical mechanics, and also in some formulations
of quantum statistical mechanics. In the Ising
model, although all dynamical variables commute,
we see that the situation differs from the ordinary
case of classical statistical mechanics as a conse-
quence of the discrete nature of these variables.

3.1 Fictitious Fields

A convenient way to define the functionals & is
to introduce external fields of a nature appropriate
to each particular choice of the functions [n(r) or
n(r) and €(r, 7’'), ete. . ..] occurring as arguments
in &. In the Ising model, the simplest field of this
kind is the field X; introduced in (2.1). This field,
which is of the nature of a magnetic field, may be
considered as a physical field, or rather, since we
are essentially interested in the thermodynamics of
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the system in the absence of an external field, as
a fictitious field introduced only in order to force
the semi-invariants to vary, and thus to allow a
natural definition of & as a functional of these semi-
invariants. The equilibrium situation corresponds
therefore to

X:=0. 3.1)

We adopt this point of view throughout the rest
of the paper.

In accord with this point of view it is convenient
to treat the external field X, as part of the perturba-
tion. Thus, instead of (2.2), we understand the un-
renormalized semi-invariants to be defined by

M. = (8/0X)" In 2 cosh X |x-o. (3.2)

As a perturbation, X, appears only implicitly in ¢, ;.
That is,

Gl.i = X-' + G{,u (3-3)

where @] ; is defined by the previous sum of proper
diagrams. In other words, we think of X, as the
simplest possible proper part contributing to G,.;.
The appropriate variational functional (2.14) now
should be written

&y = Qx{Mn,f} - EG';.-'M»,; + ZMO,i- (34)

The only place where ®x contains X; explicitly is
in Dy which contains a term

ZXiMl.G) (3'5)

clearly the simplest possible skeleton diagram. Note
that, if we subtract (3.5) from (3.4) we obtain a
functional & which contains no explicit X,’s and
is identical to our original functional (2.14) for
X; = 0. Thus we are led to consider

®{M,:} = &x(M,.} — 2 XM,

= :D{Mn.i} - ZGn,iMﬂ.i + ZMo.i- (3-6)

3.2 The Reduced Functional

The reduced functional (M, ;) is obtained from
(3.6) by substituting for the M, ;, n = 2,3, ---,
their values which make ® stationary. That is,

&"(Ml,-') = ‘I’{Mx.n Mz,i(Ml.i); }: (3'7)

where the M, (M, ;) are obtained from (2.15) for
n = 2,3, - -- . This functional is simply the Legendre
transform of In Z{X}. To see this, note that the
renormalized semi-invariants M, ; are given by

C. BLOCH AND J. 8. LANGER

Ml.i = M‘- =g hlZ/aX,, (3.8)

and

$=InZ— Y XM, 3.9)

according to (3.6) and (3.7). It is assumed for the
moment that we can invert the relations (3.8) and
express the X, in terms of the M, ;. Then

ad = YOBZ 4y S M, dX, — Y X.dM,

90X,
= —ZX, dMl_,'- (3'10)
This implies that
aé(Ml)/aMl',- = _‘X,', (3.11)

which shows again that &(M,) is stationary at
equilibrium when X; = 0.

In order to discuss the possibility of inverting
the relations (3.8), we must now examine the cor-
responding Jacobian, which is the determinant of
the matrix,

agfl,." = ai(‘.k;;i = (e — D — @) B.12)

The right-hand side of this relation, which follows
readily from (2.1), is a fluctuation matrix. It is
therefore positive-definite; and this shows that our
Jacobian can never vanish. The fact that (3.12) is
a positive-definite matrix implies that In Z is a
concave functional of the X;. It follows that the
relations (3.8) define one and only one set of values
of the X, for each set of values of the M, ; belonging
to the domain of variation of these quantities.
Clearly, from (3.8), the M, ; satisfy the conditions

-1< M, <L 1. (3.13)

A point on the boundary of the domain of variation
of the M, ; is obtained by taking some of the X,
equal to + o or — . The corresponding M,,; are
then clearly equal +1 or —1. This shows that the
inequalities (3.13) define the actual domain of varia-
tion of the M, ..

Returning now to the functional ®(3/,) defined
by (3.7), we see from (3.11) that the matrix formed
by its second derivatives may be written:

azi)(Ml)/aMll,‘ a]‘ll'i = ——aX,-/aﬂL,;. (3.14)

In this form it appears as minus the reciprocal of
the positive-definite fluctuation matrix (3.12). It is
therefore negative-definite, which shows that & is
a concave functional of the M, in the domain
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defined by (3.13). I't follows that $(J1,) goes through
an absolute maximum at equilibrium.

Ag long as N is finite, all functionals entering
the problem are analytic. For N — «, however,
the limiting functional ®(M,) may become linear
or constant in some range, in exactly the same way
as a concave curve may have flat sections. Such
a behavior is expected when a phase transition takes
place. The functional $(M,) then must have two
equal maxima at values of the M, ; corresponding
to two different phases. This is consistent with the
concavity condition only if $(M,) is constant along
the straight segment joining the two points M/ ;
and M!’; corresponding to the two pure phases in
equilibrium.

3.3 The Complete Functional

So far, we have not yet discussed the functional
of Sec. 2, which depends not only on the M, ; but
on all the M, ;. Clearly, a field such as X; does not
possess sufficiently many degrees of freedom to force
independent variations of all the M, ;. We must
therefore introduce modifications of the system of
a more general nature than those induced by the
field X;. Let us assume that the discrete values +1
taken by the u,; are replaced by a continuum with
distribution functions p,(u;). The corresponding par-
tition function is then a functional of the p;(u;):

Zip} = [ paupates) -+ iy s -+

X exp (g Zv,.,.n,.u,). (3.15)

Eq. (3.15) defines a model system which we shall
find very useful in Sec. 7 of this paper.

The partition function in the absence of inter-
action is now given by

In Z, = IZIn[fp,-(p)dy].

The diagram expansion of In (Z/Z,), on the other
hand, is given by the rules of Sec. 2, where the
unrenormalized semi-invariants (2.2) are replaced
by the MY ; defined by the relations

(3.16)

XS M = M),

(3.17)
exp [M26)] = [ ¢*ple) d.
Inversion of these relations yields, in principle, the

distribution functions p,(u) corresponding to given
M7 ..
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Let us now define a generalized external field X, ;
by writing in analogy with (2.6)

had »
M(z) = exp l: > X,_;(g;) ] In 2 eosh z.
=1

Note that this relation reduces exactly to the second
relation (2.5) when all X, ; for p = 2, 3, - - - vanish,
and X, ; = X,. The relation (3.18) may be trans-
formed into a form analogous to (2.7) or to (2.9).
Thus we have

(3.18)

M?(I) = M?O(x) eXP l:i: prp.i:Iy (319)

where
M) = f M (2) dz,
-e (3.20)

MP@) = f_ e " In (2 cosh 2) dz.

The relation (3.19) may readily be used to express
the X, ; in terms of the M} .. Thus, at least formally,
the X, ; appear as a system of variables equivalent
to the M, . or the p.(u) for the characterization
of the external disturbance of the system under con-
sideration. To be rigorous, however, one should still
determine the permitted domain of variation of each
system of variables.

The stationarity properties discussed in the first
part of this section can be extended immediately
to the more general functionals. By combining (2.6)
and (3.18), we may write for the renormalized semi-
invariants

M. (2) = exp [il X, + G,',,,-)(g;)p} In 2 cosh 2,
(3.21)

where the (7, are the proper parts defined by the
usual diagrams. This shows the analogy of X, ; with
the G’ ; and generalizes Eq. (3.3). It follows that
the expansion of In Z{X} in powers of the inter-
action v,; and of the X, ; is given by the rules of
See. 2, with additional elements corresponding to
the X, ;. Each such element X, ; should be con-
sidered, in the evaluation of the semi-invariants
associated with each point ¢, as equivalent to p
bonds. It follows immediately that

dInZ{X}/8X,: = M, ;, 3.22)

which generalizes (3.8) and enables us to write the
complete @ as a Legendre transform:

®=InZ— 3 X..M,,. (3.23)
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Then from (3.22) and (3.23) we have

de = Z (a In 2 dX,..,—X..dM,.—M, an.i)

n,i Xﬂ,‘i
-2 X, dM, ;.

(3.24)

Thus, if we invert the relations (3.22) and express
the X, ; as functions of the M, ,, substitution of
the resulting expressions into & will yield a func-
tional ®{M | such that

OB|M} /oM, ; = —X, .. (3.25)

Therefore ®{M} is stationary at equilibrium when
the external field X, ; is set equal to zero.

The discussion of concavity, however, does not
readily generalize because, for arbitrary X, ., the
probability distributions p;(u;) are not necessarily
everywhere positive. The concavity condition could
therefore hold only in a restricted domain of X, ..
This makes the corresponding domain for the M, ;
much more complicated than the domain (3.13) for
the M, ;.

4. SOME SIMPLE APPROXIMATIONS

In order to clarify the formalism developed in
the last two sections, we examine now two simple
approximations to the functional ©. The first approx-
imation yields the molecular field theory; the second
recovers the results of the ring diagram expansions
of Horwitz and Callen.’

4.1 Molecular-Field Approximation

We take for © just the diagram consisting of
two points joined by one bond (Fig. 2). This is
actually the only diagram with no articulation point
containing M,. This gives

o = IKNM:, “.1)

where

K=82>v; 4.2)
is independent of 7 as a consequence of translational
invariance, which is assumed for simplicity. Sim-
ilarly, we have assumed uniformity in the system,
ie., that M, ; is independent of ¢ and denoted it
simply by M ,.

Fig. 2. Skeleton diagram which determines
D for the molecular field approximation.
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K> 1

}

I
T 4 M,
- +1

Fra. 3. Variational function ¢(M ) for molecular
field approximation.

The stationarity relations (2.16) show imme-
diately that

G, =G, = =0 4.3)
The function & is given by
(I/N)a(M,) = ¢(M,)
= i1KM? — G,\M, 4+ In 2 cosh G, 4.4)

(the notation ¢ = ®/N will be convenient in what
follows) ; and the Dyson relation reduces to

Ml = tanll Gl' (4'5)

The stationarity relation (2.15) for » = 1, which
follows from the stationarity condition of (4.4) taking
into acecount (4.5), reads:

G, = KM,. (4.6)

Elimination of G, between (4.5) and (4.6) yields
the familiar molecular field equation

M, = tanh KM,. 4.7)

It is also easy to write ¢(M,) explicitly by eliminat-
ing G, between (4.4) and (4.5):

G, = 5In[(1 + M)/A — M,

and therefore
Ll My <1+M1> _1 (L—_Mf)
¢(Ml)—2KM1— 5 In -, 2ln 1 ;
(4.9)
This function is plotted in Fig. 3. It is clearly not
concave for K > 1, i.e., for low-enough temperatures.

4.2 Ring Diagrams

The next simple class of diagrams includes the

ring diagrams shown in Fig. 4. Their contribution
to & is given by

3 i _2_15 B M) = —% > In (1 — BrM,), (4.10)

q n=2

F1aG. 4. Some ring diagrams. O /\

4.8)
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where we have used the Fourier representation of v,;:

vy = % ;vqe-‘w"—'f’, vei = 0. (4.11)
Thus we obtain
D =3KNM: — 1> In( — B M,). (4.12)
q
From the relations (2.16) we see that
Gy =Gy= - =0, (4.13)

and we have

oM, M,) = '21'KM3 - (é‘l'ﬁ) ; In (1 — B M)

- MlGl - M2G2 + MO- (4.14)
The kernel (2.8) ocecurring in the Dyson relation
(2.7) is given by
Kz—2)=-— f dx exp [z(z — 2') + 2G, + 2°G,)

= (47"G2)_ exp [—(z — 2 + G\)’/4G;], (G, > 0).

(4.15)

It follows immediately that the Dyson relations
reduce in this case to

_ [t G, — ')] ,
u= [ @G e"p[ G, Jwh,
(4.16)

ne
_(_Ql_—_fl] sech? 2/

: e de
M. = f @G,y e"p[ 4G,

(the expressions for M;, M,, ---
Also,

are not useful).

@G —2)

G, :I In 2 cosh 2’.

(4.17)

The stationarity of ¢(M,, M,) is now expressed by
the relations

G, = (1/N)aD/aM, = KM,,

1 0D 1 By
T aN Z 1 — Bv M’

e de
M, = f @rG) &P [_

(4.18)

which are the equations discussed by Horwitz and
Callen.®

5. THE INFINITE-DIMENSIONAL MODEL

For a more detailed study of the various expan-
sions we now restrict ourselves to a particularly
simple case of the Ising model: the infinite-dimen-
sional case studied for similar reasons by Temperley.?
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In this model, every spin interacts equally with every
other spin, the interaction strength being propor-
tional to 1/N. The exact solution to this model in
the presence of an external field is extremely simple.

The partition function for the infinite-dimensional
model is given by

K
Z = ; exp [W 2o+ X 2 ue], (.1)
where K = 8J and v = J/N is the interaction
energy. Here we have introduced a uniform external
field X (independent of 7) for simplicity.

If we introduce the magnetization

M=3 Z iy (5.2)
we can write (5.1) in the form®
KM?

= ; g(M) exp [N( ) ):l, (5.3)

where the summation is extended to the following
values of M :

2
N’ N: 11

and ¢g(M) is the number of configurations with
magnetization M :

gM) = NY[ENQ1 + M [N — M)

For large N, we may replace (5.4) by its Stirling’s
approximation and replace the discrete summation
over M by an integration. This gives

M=-1,-1+2 1+ e, 1 —

(5.4)

- _1_ _2_ b aM NIS(M)+XM]
Z=0 (N) f_l 1=t SNCED)
where
_ KM* (1+M) (1+M)
- (51w (A52)
(5.6)
_KM* 1 (1—M2> M (1+M)
="3 ~3h 4 5 M\ —wm)

This function is identical with the function ¢(af,)
of the molecular-field approximation defined by (4.9)
and is plotted on Fig. 3. For K < 1, f(M) has a
maximum at M = 0. For K > 1, M = 0 becomes
a local minimum and two symmetric maxima appear.

When N is very large, the dominant contributions

8 In this expression we have not subfracted the terms
¢ = j. This makes no difference in the limit N — .
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F16. 5. Magnetization curves for the infinite-dimensional
model. For K > 1, the narrow line represents the spurious
solutions of Eq. (5 7). The dashed line is the exact M (X)
for finite N.

to (5.5) come from the neighborhood of M for which
f(M) + XM is maximum. Thus M is given by

(M) + X = 0. (5.7)

Far K > 1, this equation may have several solutions
in M. One of them only, however, corresponds to
the maximum of f(M) + XM. The variation of M
as a function of X is shown on Fig. 5. In the case
K > 1, the spurious solutions of (5.7) are represented
by the narrow part of the curve. When X = 0 and
K > 1, an exceptional situation arises as the function
f(M) + XM has two equal symmetric maxima.

When f(M) + XM has a unique maximum at
M = M, we have

lim = In Z = {(M) + XM.

Voo N
The corresponding curves are shown on Fig. 6 in
the two cases K < 1 and K > 1. When K > 1,
the derivative of f(M) + XM with respect to X
is discontinuous. This is clearly related to the dis-
continuity of M(X) at X = 0. From the original
expression (5.5) of Z, however, it appears that for
any fintte N, Z is an analytic function of X. The
nonanalytic curve of Fig. 6 is therefore the limit
of an analytic curve whose curvature at X = 0
increases indefinitely as N — « (dotted curve).

Let us consider now the variable 3, defined by

(3.8) and the reduced functional ¢(M,). When
f(M) + XM has a unique maximum, we see imme-
diately from (5.8) that

= (/N)alnZ/6X = M

(5.8)

(5.9)
and
¢M,) = (1/N)InZ — XM, = f(M,). (5.10)

Thus for K < 1, the curve representing ¢(J,) is
identical to Fig. 3. For K > 1, the same conclusion
applies except when M, lies between the two maxima,
The part of the curve corresponding to X ~ 0
requires a little more attention. The simplest way
to see what happens then is to consider a large but
finite value of N. The curve of Fig. 6 is then rounded
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off at X = 0. It follows that M, as a function .of
X is continuous, but increases very rapidly in a
small interval around X = 0 (dashed curve on
Fig. 5). On the other hand, (5.9) and (5.10) show
immediately that the variation of $(M,) throughout
this small interval is very small.

Another way to reach the same conclusion is to
examine directly the integral (5.5) for N large but
finite for K > 1 and X ~ 0. For X < 0 the integrand
has a unique maximum, but as X approaches 0,
the local maximum occurring for a nearly opposite
value of M tends to give contributions of the same
order of magnitude. As X becomes positive, the
local maximum becomes the absolute maximum, and
it becomes more and more dominant as X increases.
This, however, has little effect on In Z. Indeed,
when the two maxima give equal contributions
(X = 0) Z is multiplied by 2, which does not modify

.1
hm g inZ.
On the other hand, M, is proportional to
Z 1 aM NUSCM)+X M
ox ~ ., a—mn e '

In this integral the two symmetric maxima give
opposite contributions. In particular, they cancel
exactly for X = 0. Thus M, varies very rapidly
from one value to its opposite as the weight shifts
from one maximum to the other.

The result of this analysis is that in the limit
of N — =, the curve representing ¢(M,) is the
concave envelope of the curve representing f(M)
(Fig. 7), i.e., the curve obtained by joining the two
maxima by a straight line. For finite N, the cor-
responding curve would be a concave analytic curve
(dashed curve).

6. DIAGRAM EXPANSION FOR THE INFINITE-
DIMENSIONAL MODEL

6.1 Molecular-Field Approximation
The factors associated with the various elements
of a diagram for D{M,} are, in the ecase of the

sinz tihz

RS

K>

Fic. 6. The function (1/N) In Z(X). The dashed line for
K > 1is the analytic function for finite N. The solid line is
the nonanalytic limit function for N — .
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infinite-dimensional model, K/N with each bond;
NM, with each point.

We can also decompose the factor K/N associated
with each bond into two factors (K/N)?! associated
with each of the two points joined by the bond.
The rule becomes then that we must associate a
factor

N(K/N)"*M, 6.1)

with each point at which » bonds arrive.

This shows that all individual diagrams with no
articulation points give contributions proportional
to 1, 1/N, (1/N)?, --- except the unique diagram
consisting of two points joined by one bond, which
gives a contribution proportional to N. Retaining
only this diagram we obtain

D = INYK/N)M? = sKNM:. (6.2)

This is identical with the molecular-field approx-
imation (4.1). The corresponding function ¢(M,) is
therefore given by (4.9):

1 M 1 M
sy = L xary - 2oy, (12 n)

1 1 — Mf)
-5 In ( m .
It is identical with the function f(Jf) defined by
(5.6). It follows then from the discussion of the
previous section that (6.3) is rigorously exact in
the limit N — «, except when K > 1 and M, is
between the values of M which make /(M) maximum.
In this interval, the exact function is constant
whereas (6.3) goes through a minimum (curve f
on Fig. 7).

(6.3)

6.2 Ring Diagrams

The choice (6.2) for D is based upon the following
argument: we consider each term of the expansion
of D separately, consider its limit for N — o, and
sum the resulting contributions. In this procedure,
all diagrams give a vanishing contribution in the
limit N — o, except the diagram containing a

single bond and two points. A different result, how-

ever, might be obtained by summing first a family
of diagrams, finding the maximum of the stationary
functional and letting N — <« at the end only.

This may be illustrated very easily by considering
the ring diagrams. We return therefore to (4.14)
which simplifies considerably since, in the infinite-
dimensional model,

vo=0 for q =0, vo = K/B.
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Fia. 7. The exact reduced functional (M ;) for the infinite-
dimensional model. The dashed line represents (M) for
finite N.

Thus we have
oM, M;) = 3KM; — (1/2N) In 1 — KM,)
- M1G1 - Msz + Mo. (6.4)

In addition, M,, M,, and M, are given in terms of
G, and G, by the relations (4.16) and (4.17).

Let us discuss the reduced functional ¢(3,) ob-
tained by substituting in (6.4) the value of M, which
makes ¢(M,, M,) stationary with respect to M,:

&(M,) = (M, M,), (M., M2)/dM, = 0. (6.5)

The stationarity condition with respect to M, is
equivalent to the second relation (4.18) which re-
duces here to

G, = (1/2N)K/(1 — KM),

i

or

1/K = 1/2NG, + M,. (6.6)

Elimination of M, between (6.6) and the Dyson
relation (4.16) for M, yields for the determination
of (; an equation which may be written

1/K = 1/2NG, + 8(Gy, G>), 6.7)

where

+ o

dy s
$(Gy, Go) = f (47rgz),)e /405 sech? (y 4 G,). (6.8)

Here we have replaced the integration variable 2/
of (4.16) by y = 2/ — G,.

The behavior of the solution G, of Eq. (6.7) as
N — o is most easily discussed by plotting $ and
$ + 1/2NG@, as functions of G, (Fig. 8). For G, = 0,
§ = sech® Gy; and for G, large, 8 ~ G;!. When N is
large, 8§ + 1/2NG@, differs very little from 8, except
for the small values of G,. Let us denote by u(@,) the
maximum of the function 8(G,, G.) for G; varying be-
tween 0 and 4 ., We see from Fig. 8 that if

(a) é— > u(G,), then @, — 0,as N — + o ;



564

|
1\ a) ) 1 (G

\\[s(G..GzH 2—,"51
\

b) % (u (G
S(leGZS\

but that if

®) % < ulG),

Fia. 8. Graphical solu-
tion of Eq. (8.7).

then G, has a finite limit, the solution of the equation
1 e d —y? 2
& = f @%)7 e/ sech® (y + G)
o ? 6.9)
= S(Gl, Gz).

In the case (a), we obtain naturally the same
answer for ¢(M,) as in the molecular-field approx-
imation when the ring diagrams are omitted. But
this is not true in the case (b).

It may be shown that if @, is sufficiently small

u(@) = $(G,, 0) = sech’ G, (G, small). (6.10)

According to (b), a nonvanishing G, then appears
when

0 < K — cosh® G,

K—-QQ-Mmy"
62¢(M1)/6M3)

(6.11)

where we have used (4.8), and where ¢(M,) is the
molecular field approximation (6.3). The condition
(6.11) is satisfied in the region limited by the two
inflexion points of the molecular-field curve.

Thus &(M,) is modified by the ring diagrams
between the two inflection points of the molecular-
field curve (Fig. 9). This applies when @, is suffi-
ciently small in the condensation region, i.e., for
small-enough K.

Fm)

™,

1

! .
-l 0 +
F1a. 9. The reduced functional in the ring-diagram approxi-

mation. (This curve does not represent a numerical caleu-
lation.)
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7. GENERAL FAMILIES OF DIAGRAMS
7.1 The Model System

We now consider higher-order contributions to
the functional H{M}. It should be emphasized that
we do not mean “order” in the conventional per-
turbation theoretic sense, i.e., powers of the inter-
action strength K. In the last section we computed
D as a function of M, and M, and to all orders
in K. Similarly, we now contemplate D as a function
of a larger but still finite number of semi-invariants,
say, M,, M,, My, or M,, M,, M,. Most generally
we want to consider a set of M,’s with arbitrary
indices n; up to a maximum index ». The set of
all diagrams which can be formed with the given
semi-invariants is what we call a “family of dia-
grams”. By summing a complete family, we obtain
in principle a non-perturbation-theoretic variational
function which is still a function of only a finite
number of variables.

The difficulty arises immediately that, for families
with » > 2, we no longer are able to compute D
directly because we cannot sum these larger classes
of skeleton diagrams. For practical purposes, then,
we must investigate the convergence of the partial
perturbation expansion required for approximation
of ®. To do this we take advantage of the exact
solubility of the infinite dimensional model to ob-
tain, at least implicitly, a generating function for
this expansion.

Our strategy is based on the observation that,
if we take a model system in which only a finite
set of renormalized semi-invariants are nonzero,
then the class of all skeleton diagrams for this system
must be formally identical to the family of diagrams
which define the desired function © for the original
system. This model system clearly must be the same
as the one we introduced in Sec. 3, that is, one in
which the p; are no longer restricted to =1, but
may take any value u with a probability distribution
p(u) such that all its semi-invariants vanish except
those we have selected. Thus

| w6 e du = exp (Z Z@),  aw

where Q° denotes the nonvanishing semi-invariants
of p(u). The partition function = for this system is

2= [ di e [ dude) o)

X exp [éKTV— (Z yi)z]. (7.2)

The diagram expansion for (1/N) In £ = ¢{Q°} may
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be generated in the usual way; and we may write,
following Eq. (2.14),

W) =y E=5 2@ = T QlatQ, (73)

where the Q,, n < », are the renormalized semi-

invariants; and the J,, related to the @, by
J. = (1/N) 89/3Q., (7.4

are the contributions of the proper renormalization
diagrams. Our point is that D{@Q} is in principle a
known functional because ¥{Q’} is known. Expan-
sion of D{Q} in powers of the @’s generates the
skeleton diagrams for the model system. But this
set of diagrams is identical to the family of skeleton
diagrams which determine H{M}. Furthermore, the
variables @,, J, are the same as the sets of variables
M,, G,; thus we shall drop the notation @Q,, J, from
now on.

7.2 The Distribution p(u)

In the following analysis we need some properties
of the distribution function p(x).
The inverse of the Laplace transformation (7.1) is
ply) = Lfa+i®dz exp(ién—Q“ —z) (7.5)
271 Jom i T nl " ) '
The convergence of this integral depends on the
parity of », the largest value of n such that @° = 0,

and on the sign of Q. TFor » even, convergence
requires that

(—1)°Q) < 0 (v even); (7.6)

whereas for » odd there are always values of @ such
that (7.5) converges.

It is interesting to examine the asymptotic be-
havior of p(u) for large u. The saddle-point method
yields (Appendix B)

eE sing

~ M)*_.__ <f m )
p(p)N(ﬂ_ (V_1)|#|c0s2:t4—£cosw

(7.7)
for u — = =, where

— — 1 /(v—1)
E - v - 1 “[(V Q].O) l}ll] ~ Iylv/(v—l); (7.8)

and the phase ¢ is defined by
¢ = [r/ — Dlin — 3¢ + 1)] for u>0;

¢=[r/G—Dln—3¢+1)+2] for p<0.
(7.9)

Here 7 is the integer, even when p/Q° < 0 or odd
when u/Q° > 0, such that
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n<eG+1)/2<n+2 for p>0;
n<@+1)/2<n+2 for p<O.

Thus, roughly speaking, p(u) exhibits for u — =
oscillations of decreasing amplitude proportional to
an exponential function of |u[””“"" except when
¢ =0,ie,ifr =2n — 1.

(7.10)

7.3 The Unrenormalized Expansion

Let us consider now the partition function =
given by Eq. (7.2). Since p(u) always decreases more
slowly than an exponential of u® the convergence
of (7.2) requires even for finite N that K < 0,
corresponding to a repulsive (antiferromagnetic) in-
teraction. We therefore leave out for the moment
the case of an attractive interaction.

We use an integral representation of the delta
function to write:

E = f dpy -+ f_ dﬂNp(ﬂl) tte p(F‘N)N
X f dM VM2 S(Z p; — MN)

= ‘/: du, - f_: duxp(ps) - - plun)N

+ic

dz

—i

L

X f_m aM 2w

X exp [z(z ui — MN) + ANKM?]

3 i
- (ﬁ%) [ aere, (7.11)
where
2L _ 2.

In deriving (7.11) we have carried out explicitly the
integration in M and used (7.1) for the integrations
over u;. It should be understood that for K < 0

K} = 4i(—K)L. (7.13)

The diagram expansion of = for the model system
is of the form of an expansion in powers of the Q°,
or, more precisely according to (6.1), in powers of

N(E/N)y"QR,

Such an expansion is obtained immediately from
(7.11) by introducing a new variable of integration y:

2 = w(—K/N),

n=1,2,....

which yields

—t 1 ® g—y3
Z - 5o f_,, dy 7, (7.14)
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where

y K)n/Z 0
SZNE" e
and by expanding ¢’ in powers of y. In (7.15) the
convention (7.13) should be used for the half-in-
tegral powers of K < 0. This gives the expansion

9@) = (7.15)

e—y'/Z

[ 1 ® e
o n,,;-.. (271'); f_m dy nlngd ---

X [@/INE/NPNQI™((*/2)) (K/N)NQI™ - -
(7.16)

This expansion contains only integral powers of K
because

f dye™ " =0 for n odd.

Thus E may be considered as a formal generating
function for the chosen family of diagrams. The
form (7.14), (7.16) of E shows that this applies for
K > 0 as well as K < 0. When K > 0, we can
bring = back to a form similar to (7.11) by the
change of variable

z = y(K/N),

- l 4 ® NF(z)
A= (2WK> /_q, dze ™,

The only difference between (7.11) and (7.17) is that
the integration in (7.17) is taken now along the real
axis instead of the imaginary axis.

The function E ecannot be considered as a generat-
ing function in the ordinary sense because the expan-
sion (7.16) has a vanishing radius of convergence in
N(N/K)"*Q°. This follows from the fact that @° = 0
is & branch point of E considered as a function of
the complex variable Q° (Appendix C).

7.4 Renormalization Equations

The next step in the procedure is the transforma-
tion from the unrenormalized Q! to the renormalized
variables M.

The Dyson equation is

which gives

(7.17)

1 1 2 0
(7.18)
For example, if » = 3 we have
=Q + Q: + GG + G)Qs;
= Q: + GiQ5; (7.19)

= Q5.
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Rather than use Eq. (2.16) or (7.4) to evaluate
the proper parts G,, we must base the calculation
on ¥{Q"} as computed in Sec. 7.3. This can be done
by noting that

W _ 1
BQ?. - n1!n2! A

n + 2n, 4 .-

n n

ni,ng, "

(7.20)

=n’

which is quite obvious in terms of diagrams. Indeed,
differentiation of ¥ with respect to Q° has the effect
of selecting any of the points of index n. Such a
point may be an articulation point for n, proper
parts contributing one bond, n, contributing two
bonds, ete., . .., in such a way that

n +2n, + ---

=n.

Each of these proper parts corresponds to a contribu-
tion to Gy, G,, - -+ , respectively. The relation (7.20)
follows immediately. Finally, we may combine Egs.
(7.18) and (7.20) to obtain the renormalization rela-
tions in closed algebraic form:

_ 0 y—~1 a\I/

m=1

(7.21)

mine

The set of equations (7.21) has a remarkable
integral representation. From (7.17) and (7.12) we

obtain
f dz 2" NF(z)/f dz &7,
GQ,. -

Then using
i)” _z’_]
(dz [F(z) +or |
we obtain for the renormalization relations
® 2 NF(2) ® NF(z)
= f dz K /f dze ;
I:f dZF”(Z) eNF(:)/f dz eNF(t)]
M, f dzF ™ (2) e"”’)/f dze"" ),

n=3,4, -,

(7.22)

y—n m

Z Qm+n =

m=0

M2=

(7.23)

In the first of these equations we have taken into
account the identity

f deF'(z) "7 = 0.

We need also the relation
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M, = ﬁ: dz[F(z) +§_;_{_jl eNF(z)/jj; de PP

_—.f dzeMo(2) e”“”/f P AR

The equations for the G, may conveniently be
written

exp (i x"G,,) = [jm dz e””’”"/fw dzew(”]
+ 0@™Y), (7.25)

where it should be understood that the expansions
in powers of z of both sides are identical up to
order z’. Equation (7.25) follows immediately from
the relations (7.20) and (7.22).

(7.24)

8. ASYMPTOTIC EVALUATIONS

8.1 Single Saddle-Point Evaluation

The function F(z) as defined by Eq. (7.12) is
just a finite polynomial in 2. Therefore, except for
very special choices of the @7 (which we shall see
are very important), it is reasonable to assume that
the integrals (7.23), (7.24), (7.25) are dominated by a
single saddle-point in the limit N — . Let us call
this dominant saddle-point s. We have then

M, = s/K + O(N¥);

M, = 1/K + F”(s) + ONY;

M, =F"@) + 0N, n=34,.;
M, = F(s) + §/2K + OV ?);

and

6.1

exp (Z -'c"Gn) ="+ 0™ + 0. (82)

n=i
This last relation (8.2) gives

G, = s+ OWN™Y;

G, = OIN™Y,

(8.3)
n=23- ",

Equations (8.1) show that the M, in this approxima-
tion are the derivatives (or the derivative plus 1/K
for n = 2} of F(z) at the dominant saddle-point.
This should be compared with the relations (7.12)
according to which the unrenormalized @2 have the
same meaning at z = 0.

Conversely, G, and the M, determine F(z) to order
N~* by the Taylor series expansion

re = F — oL 4 S E=L 4 oy,
8.4)
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where

FO) = F) — 55 + ) (;;f}”

n=2

M » = 0: (8‘5)
valid to order N7} is required to complete the
definition of F(2) given by (8.4). We have in addition

s =@ (8.6)

to the same order of approximation.

Under the same assumption of uniqueness of the
dominant saddle point, we obtain from (7.3) and
{(7.17)

¢ = F(s) + ON7Y). 8.7
Solving (7.3) for ® we find
D/N = ¢+ MG, — M, 8.8)
2 2 2

£ & KM
F&)~sg =25 ="3 ~

= F@ + 3% -

where we have used the relations (8.1), (8.3), and
(8.7). This is precisely the molecular field approxima-
tion given by Eq. (6.2).

8.2 Domain of Variation of the M,

It should be noted now that the single saddle-point
assumption, although apparently very weak in terms
of the Q% imposes a nontrivial constraint on the
variation of the M,. In particular, the M, must be
such that z = s corresponds to the absolute max-
imum of ReF(z) along the contour of integration.
For the case of an attractive (ferromagnetic) force,
when the contour may be taken along the real axis,
this condition requires that

¥

Y u, <o

n=2 n!

u2
Rk + 8.9)
for all real values of u. This means that when the
unrenormalized semi-invariants @° [i.e., the func-
tion F(z)] are allowed to take on all possible values,
the renormalized M, defined by the sum of the
corresponding subdiagrams remain within a re-
stricted domain, say, 9M,.

The domain 9%, is clearly convex. If {M’'} and
(M} (that is, M!, MY, --- and My, MY, «-.)
denote two points of M, such that (8.9) is satisfied
for all u, then the same condition is satisfied also by

{M} = N{M'}] -+ N {M') (8.10)
with

NN 20, N4 N =1
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F(z)

Fis)t— — —

+ } z
t A\ 10

Fra. 10. A typical function fF (2) for {M'} on the boundary
(o) ml.

In order to examine the domain 9, for the in-
finite-dimensional model we return to the original
function ¢(M,, M,, ---) with D given by (8.8).
Because G; = (3 = --- = 0, the Dyson relation

is simply
M, = (d/dG,)" In 2 cosh G,. (8.11)
Condition (8.9) then reads
—u?/2K 4+ In 2 cosh (u + G))
— In2coshG; —utanh G, < 0, (8.12)

where we have let v — . We may write (8.12)
in the form

Foz) — Fo(G)) — (2 — GO)Fi(G) <0, (8.13)
where
z2=0,4+u
and
Fy(z) = —2°/2K + In 2 cosh 2. (8.14)

The inequality (8.13) for all # means that the curve
representing Fy(z) must be entirely under its tangent
at z = @,. This excludes precisely the values of G,
corresponding to the two-phase region, in which the
function ¢ following from (8.8) is manifestly wrong.

8.3 Two or More Equivalent Saddle Points

Now consider what happens when the point { M’}
approaches the boundary of the domain 917,. In the
simplest case the function F(z) has, in addition to
its maximum at ¢/, a single secondary maximum at,
say, z = s” such that F(s") — F(s') as {M'} ap-
proaches the boundary. A typical function of this
sort is shown in Fig. 10. When {M'} is so close to
the boundary that F(s’) = F(s"’) to order N', then
Egs. (8.1) and (8.2) must be replaced by

M, = (/KNS + N,

M, = 1/K + NF"(s") + N'F''(s"'); (8.15)

M, = NEO() + NFOE,  n=3,4, - ;

exp (Z x"Gn) =Ne* + N+ 0@E™); (8.16)
n=1
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where A’ and A" clearly are positive numbers such
that A" + N/ = 1.

In interpreting these equations it should be noted
first that the point {M’} on the boundary of W, is
associated with a second point {M"'}, also on the
boundary. The set of semi-invariants M{’, M}/, ---
are the coefficients of the Taylor series expansion
of F(z) about the point s”’. Conversely, had we
started with {M’'} and let it approach the boundary,
we should have obtained {M’}. Furthermore, from
Egs. (8.15) we find a whole new set of semi-in-
variants {M} which lie on a straight line between
{M'} and {M"}. Because 9, is convex, the new
points {M} all lie within the original domain, as
shown in Fig. 11. They define a new domain 91,
which is contained in 91, and may or may not cover
it completely. On the other hand, Eq. (8.16) implies
that the @, are not just weighted averages of the
G, and G’ but are much more complicated. In fact,
we obtain a series of nonvanishing @, G, ete., and
consequently, a functional D quite different and very
much more complicated than that of Eq. (8.8). Thus,
at the points {M} in 9N, we have at least two
different functionals, say ©,{M} and D.{M}.

In general, we must consider the set of points
on the boundary of 91, such that F(z) has, say,
p equivalent saddle-points. Associated with any one
such point there will be p — 1 other points on the
boundary. By an obvious generalization of (8.15),
these sets of p points generate a domain 9, on
which is defined a pth new functional ©,{M}. The
convexity of 91, implies that any 91, lies entirely
within 9,. It should be emphasized that the varia-
tional principle applies over the entire set of fune-
tionals D, {M}.

8.4 Convergence of the Expansions

The convergence of the various expansions which
have been used in the summation of general families
of diagrams may be discussed by means of the
generating functions (7.11) or (7.17).

Let us consider first the unrenormalized expansion
of Sec. 7.3. It has already been mentioned that
this expansion (7.16) is not a convergent expansion.
The discussion given in Appendix C shows however
that this is an asymptotic expansion for N — o
provided the maximum of the real part of the expo-

Fig. 11. The domain 91,
showing a point {M } in 9,
generated according to Egs.
(8.15). {m'}
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nent in the integrand takes place at the origin z = 0.
This occurs only when K < 1, i.e., above the critical
temperature.

The renormalized expansion is obtained less di-
rectly. The discussion of the integrals occurring in
(7.23) is essentially the same as in Appendix C. One
important difference, however, is the fact that we
do not have to expand the exponent around z = 0
as in the unrenormalized case. Assuming the exist-
ence of one dominant saddle-point s, we can expand
F(z) around s:

F(z) = F(s) + E gz——;—!le("’(s).

The argument of Appendix C then yields asymptotic
expansions of M, M,, --- , M, and also of X
(from 7.11 or 7.17) in terms of s and the F'(s).
It is essential to note here that the condition that
the maximum of Re F(z) along the contour should
take place at z — s = 0 is now automatically
satisfied.

It is still necessary to invert the relations giving
the M, in terms of the F " (s). Substitution of the
resulting expressions of the F(s) in terms of the
M, into E, will, in principle, yield an asymptotic
expansion for D, in terms of the M,. This expansion
is valid inside the domain 9%,, where it generates
the family of skeleton diagrams. The functionals
Dy, Dy, -+ do not generate the perturbation expan-
sion.

These considerations apply only inside the domain
M, Outside M, the function F(z) reconstructed
from M,, M, - - - has a saddle point giving a larger
contribution than the initial saddle points. It is how-
ever possible to find a contour going through s,
but not through the other saddle point, simply by
staying in the valleys nearest to s. This defines a
new function towards which the expansion is now
asymptotically convergent. Thus, outside the domain
9N, the renormalized expansion remains asymp-
totically convergent, but it does not any longer rep-
resent the equilibrium partition function.

It is tempting to interpret the functional D, out-
side M, as giving the partition function of a metasta-
ble phase. In fact, for the infinite-dimensional model
this interpretation is almost certainly correct. The
analytic funetion ¢(M,) given by Eq. (6.3) is ident-
ical to f(M) given by Eq. (5.6); and f(M) clearly
gives rise to a two-peaked probability distribution.
More precisely, the function f(M) + XM exhibits
a stable and a metastable peak in the presence of
the external field X. Note that the anomalous be-
havior associated with the divergence of the ring
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diagrams always occurs outside 9N,. This singularity
apparently corresponds to the limit of metastability.

In accord with the discussion of metastability,
it is apparent that the renormalized expansion con-
verges asymptotically to a functional D, describing
a single phase with uniform magnetization. Pre-
sumably D, has something to do with two phases
in equilibrium; but the connection is not really clear.
The physical interpretation of the higher functionals
D, is also doubtful. In any case, we know from the
theorem of Sec. 3 that the reduced functional &(M,)
should be concave; thus, in order to compute the
complete & from D,, we need only take the concave
envelope of the perturbation-theoretic result. A ser-
ious study of the two phase region for more realistic
models must await further developments.
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APPENDIX A: THE SEMI-INVARIANTS

Straightforward expansion of (2.1) in powers of v,;
yields:

1 m
E -m——' (g) Viur o sttty -

m,i,f,0

Z =1, ), (A1)

where m denotes the number of factors v,;, vz, - - -,
and the bracket the expectation value defined for
any function of the u; by

(elpry pzy =)
= g T ey, ) op (T Xw). (A

Here Z, denotes the partition function (2.3) in the
absence of interaction. For instance,

W =@ = =@ =1, (43)
() = (ui) = -+- = (") = tanh X,.
Clearly
<F-il‘i) = <I"'i><#i>y if 43 j: (A4)

(uapime) = (X(u;Xm), if

The relations (A3) and (A4) give immediately the
values of all the brackets occurring in the expan-
sion (Al). These values, however, depend on which
groups of indices ¢, j, k, --- are identical in each
term of the summation. In order to overcome this

t# j &=k # 1, ete.
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complication, let us define new quantities, denoted
by curly brackets, through the following relations:

(ua) = {u:},
ey = {pa;} + o} ),
(s = {ppim} -+ {ue} (oo + Lo} (s
+ {mlpm} + (o o) g, -

The right-hand side of these relations involves the
sum of the products of curly brackets obtained in
splitting the factors u,, u;, i, --- in all possible
ways. It is easy to see that, as a consequence of
the relations (A4), the curly brackets satisfy the
relations

(A5)

{uipjpe +++} =0, except ifi=j=k= .-+,
(A6)
We can therefore write
{#s#iﬂk } = §;; 8ip v v- M:.n (A7)
where 7 is the number of factors u;, u;, --- in the
curly bracket, ahd
M. = {ui}. (A8)

Substitution of the expressions (A5) for the brackets
into (Al), taking into account the relations (A7),
leads immediately to the diagram expansions of Z
and In Z described in Sec. 2.

The simplest way to derive the actual values of
the semi-invariants M3 ; is to consider a fictitious
system without two-body interaction v,;, where the
field X; is replaced by X + 8X,. The partition
funection is then '

Z 2 exp E (X 4 86X )ps

tal 1

I 2 cosh (X + 8X3),

I

and therefore
InZ =1InZ, + X In2cosh (X; + 6X:)  (A9)
=y Zg({%) In 2 cosh X,.

On the other hand, the only connected diagrams in
this case consist of a single point withn = 1,2, --.
incoming 6X; lines. Thgs

H nwi

InZ=1mhz+ 2 E'%Mﬁ.;, (A10)

% n=1
where n! is the symmetry factor of the diagram.
Comparison of (A9) and (A10) yields the relation
(2.2). :
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Except for the particular values of the semi-in-
variants, the above argument clearly applies to any
probability distribution p,(g,) of the values of the
spins.

APPENDIX B: ASYMPTOTIC EVALUATION
OF EQUATION (7.5)

The saddle points of the exponent in (7.5) are
given by

‘n/_:@%—lﬁcz?.—wo (BL)

When u becomes very large, |2 for the saddle points
becomes very large also and the term of highest
order in z dominates. The equation (Bl) may there-
fore be reduced to

27Q/ — D! — = 0.
This gives » — 1 saddle points on a circle of radius
r=|(v — DIp/Q" V. (B3)

The value of the exponent at the saddle points may
be written, by using (B2), '

vt — pz = —@ — Dpzfr. .

Similarly, the second derivative at the saddle points
reads

(B2)

(B4)

27/ — = (v — Du/z.

We must now examine through which saddle points
it is possible to draw a contour going from —iw
to +iw, in such a way that the real part of the
exponent,

(B5)

(0" /WDQ cosvf — ppeos §  (z = pe”’),  (B6)

has its maximum at the selected saddle point or
points. Let us consider the variation of (B6). for
fixed 6, as p goes from 0 to + «. This function goes
through a minimum equal to

-1 — 1)! g\
m{6) = —’i—vw-» i Cos B(Q““Qo)(w"—.:"f'gé—) , (B7)

when 8 is such that

pcos >0, Q% cos 0 > 0. (B8)

These conditions define sectors of the complex plane,
each of which contains one of the saddie points
(Fig. 12). Within each sector, the function (B7) goes
through a maximum at the saddle point. It follows
that for each contour going through one of the
sectors defined by (BS), the real part of the exponent
takes values at least equal to the saddle-point value.
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On the other hand, the conditions
pecos 8 <0, Qcosvd>0 (B9)

define another set of sectors within which the real
part of the exponent is positive, and therefore larger
than at any of the saddle points contained in the
sectors (B8). It is now clear that a contour C with
a maximum value of the integrand in (7.5) as small
as possible is obtained by crossing all the sectors
(B8) at their respective saddle points (Fig. 12). From
(B4), it follows that the two saddle points nearest
to the imaginary axis give the dominant contribu-
tions. This yields immediately the expression (7.7).

APPENDIX C: EXPANSIONS OF CERTAIN
CONTOUR INTEGRALS

Let us consider an integral of the form

L@ @, -+ 0) = g [ 2™, D)
where

_ .2 2 Z C2

F@) =t g+ asgi--- +a>5 (€2

The integral (C1), when taken along the real axis
is convergent only if

(C3)

More generally, however, the integral may be taken
along a contour C coming from infinity in the direc-
tion 6_, and going to infinity in the direction 4,.
The convergence conditions (C3) are then replaced

by

v even, Rea, < 0.

Re {a,e"’*} <0, (C4)

which reduces to (C3) when 8. = 0, 6_ = =.

It is easy to see that when a, and the contour C
are fixed according to (C3) or (C4), the integral
(C1) is absolutely and uniformly convergent when
aq, @3, *** , @,—, vary inside any bounded region.
The integral Iy(a., as, - - , a,) is therefore an entire
function of a,, as, - - - , a,-, for fixed a,. The expan-
sion in powers of a,, as, +-- , a,., obtained by
carrying out the z integration in

_ 1 Nayz¥/v!
Iy = ——(27r)§ [ dze

X [1+NF1(Z)+%F1(Z)2+ "':I; (05)
where

i z
@ =ag+ag+ - + o T
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o cos 80

- cos 8¢0 O,?cos v80

Qgcos v60

Fic. 12, Contour of
integration for Eq. (7.5)
in the case v = 6, Qs > 0,
and g > 0.

is convergent for all values of these variables. The
successive terms of this expansion, however, involve
increasing positive powers of N, and the expansion
is therefore not appropriate to a study of the limit
N> o,

The analytic properties of (C1) with respect to
a, are quite different. For each value of a,, the
conditions (C4) define permitted sectors of angle
w/v for 9. and 6_. This allows »(» — 1)/2 choices
of contour giving as many different values for I,.
The contours such that §, — 6_ is the same actually
correspond to the different branches of the same
analytic function around the point a, = 0. Indeed
the conditions (C4) require a rotation of the contour
when a, turns around 0. To one turn of @, corresponds
a decrease of 6, and 6_ equal to 2x/», which yields
another contour € such that 8, — 6_ has not changed.
This gives altogether (v — 1)/2 functions having
» determinations at the branch point a, = 0.

It follows immediately that the expansion in
powers of a;, ay, --- , a, obtained by ecarrying out
the z integration in

- _l_f Nasso/2
Iy = &) dze

X [1 + NFy(2) + N°Fo2)°/2' + ---],  (C6)
where
Fa@) = a0 % 1 a, % z
2(2) = a5 5 tagt oo +aes, €D

has a vanishing radius of convergence. We are,
however, led to investigate this expansion further
in the case N — «, by the fact that the successive
terms are proportional to increasing powers of N2,

Let us show that (C6) actually leads to an asymp-
totic expansion for N — o, provided the maximum
of Re F(z) along the contour of integration takes
place at 2=0. Let a be a number such that } < « < £,
and let us divide the contour of integration in (C1)
into two parts C, and C, by

C,:lz| > a/N°?, Cy: 2| <a/N 5
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where a is an arbitrary positive number. Since the
maximum of Re F(2) is equal to 0 at z = 0, we have
along C,

Re F(z) < —b/N*",

where b is some positive number. It follows imme-
diately that the contribution I, of the portion C,
of the contour to I satisfies the inequality

II,] < cexp (—bN'™*), (C8)

where C is some positive number. This assumes,
of course, that the integral is convergent.

For z on C,, there is clearly a positive number d
such that

3

eXpN(aaz_!'—i_ . +av%) - Sn(z)

< dN"72",
(€9)
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where S,(z) denotes the expansion in powers of z
of the exponential oceurring in (C9) up to the order
n — 1. It follows now from (C8) and (C9) that

|I}v - I;v")

N
@m)?

< cexp(—bN'"**) +dlI, |a,|~ V2N~ "*¥/% (C10)

dz zn eNa.s’/2
Ca

< cexp (BN +

where

_ 1 f+w n —ul/2
I, = @ ). duu" e ™%,

In (C10), I{” denotes the expression obtained from
(C6) by retaining in the bracket the terms of order
lower than n in z. This relation shows that this
procedure yields an asymptotic expansion for N — .
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By means of an inequality providing an upper bound for the norm of integral operators, it is shown
that the Bethe-Salpeter equation for bound states of the electron—positron system (in the ladder
approximation) admits solutions associated with a discrete spectrum of binding energies. It is found
that in the weak coupling limit the spectrum B(«) approaches asymptotically the Coulomb spectrum

in the sense

lim (Bla)/ma?) = {(1/4n%) |n = 1,2,3, -+ =},

a—0

where a is the fine-structure constant and m the electron rest mass.

NE of the major successes of quantum electro-
dynamics has been the calculation of the energy
levels of the electron—positron bound system'
(poistronium) in agreement with experiments of
high accuracy.” These calculations were based on
the field-theoretic Bethe—Salpeter (BS) equation and
in fact remain the only direct numerical confron-
tation of the BS formalism with experimental data.
It is, accordingly, an annoying fact that no use-
ful hints were obtained from these calculations as
to the existence of solutions and the discreteness
of the spectrum of the BS equation, because the
approach used was essentially a perturbational
scheme of corrections to the “instantaneous” Cou-
lomb problem. It seems, therefore, desirable from
the theoretical point of view to demonstrate that
the BS equation for states of two spin-3 particles
bound by the electromagnetic field admits solutions
corresponding to a discrefe energy spectrum which
is approximated in lowest order (i.e., in the weak
coupling limit) by the nonrelativistic Coulomb spec-
trum. It is understood, of course, that the interaction
kernel is to be approximated by a finite number
of irreducible graphs. The corresponding problem
for spinless particles bound by a scalar field was
essentially solved by Wick® who was able to reduce
the problem to the eigenvalue equation for a com-
pletely continuous integral operator. However in the
case of spin-; particles interacting through a vector
field the kernel of the integral equation is not com-
pletely continuous (because of the behavior of the
spinor propagators for large momenta) and the prob-
* Work supported by the U. S. Air Force Office of Research,
Air Research and Development Command.

t Part of this work was done during the author’s stay at
the Physics Department, Brookhaven National Laboratory,
Upton, Long Island, New York.

1 R. Karplus and A. Klein, Phys. Rev. 87, 848 (1952).

2 M. Deutsch, Phys. Rev. 87, 212 (1952).
3 G. C. Wick, Phys. Rev. 96, 1124 (1954).

lem has since remained open although it corresponds
to the physically interesting situation. An embarrass-
ing set of solutions indicating a continuous spectrum
was found by Goldstein® in the “ladder’ approxima-
tion for the special case of zero total energy but
these solutions were shown to be inadmissible by
Mandelstam’s normalization condition.’

In this note we consider the BS equation for e*e”
bound states in the “ladder” approximation (i.e., we
approximate the interaction kernel by the one-
photon-exchange diagram), although we believe that
our approach can be applied to more general situa-
tions. It is shown that the equation admits solutions
compatible with Mandelstam’s condition and asso-
ciated with a discrete spectrum, which coincides asymp-
totically with the nonrelativistic Coulomb spectrum in
the weak coupling limit in the sense lim,_,, B/md® =
in’;n = 1,2, --- o, where B is the binding energy,
a the fine-structure constant and m the electron
rest mass. Any other solutions must violate a simple
integrability condition, which although compatible
with Mandelstam’s criterion does not seem to follow
directly from physical considerations.

We consider the Fourier transform ®,5(p) of the
BS wavefunetion

Xas(®) = O T[¥a(32)¥s(—32)] |B), ¢y

for a e'¢” bound state represented by |B). Here
¥(z) is the electron field operator (¢ = y'y,) and
T is Wick’s chronological operator. The BS equation
in the ladder approximation reads

e’ 1
) = ~ByinG 3D + m

dk 1
X f P 7u2(k)v, =Pt m’ @)

¢ J. Goldstein, Phys. Rev. 91, 1516 (1953).
( 955 ?) Mandelstam, Proc. Roy. Soc. (London) A233, 248
1 .
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where @ is the 4 X 4 matrix with components
®,5(p) and P is the total 4-momentum of state |B).
We use the metric pk = p-k — poko = p-k + p.ks
and v matrices that are Hermitian and unitary.
For concerteness we work in the ¢.m. frame in which
P, =P, =P, =0,P, =1iP, = {E.

We first perform the Wick rotation® of the integra-
tion path of the relative energy to the imaginary
axis in order to “‘cure” the singularities of the kernel
due to the indefiniteness of the relativistic metric.
Next we require that the function

) = e@iv(e — 3P) + m] ®3)

be square-integrable in the sense

[ oienay < +=. @

Although it would be very interesting to see if
this requirement can be deduced from a physical
argument, we have introduced it only in order to
apply the methods of ordinary functional analysis.
We note that (4) excludes the Goldstein solutions*
and is compatible with Mandelstam’s criterion® for
the singularity of x(x) at z° = 0.

It is clear that the 4 X 4 function matrices
satisfying (4) form a Hilbert space 3¢ with inner
product

o) = [ Tr lelD)eat)]

and the function f(p) defined by (3) satisfies

¢ 1
(2) yip+ 3P)+m

o) =

d'k 1

")

or symbolically f = Kf where K represents an op-
erator on ¥. We now show that K is a bounded
operator on 3C. By means of the inequality

ITI‘ (AlAz Tt An)l
< [Tr (A{A4)) Tr (A;45) -
we deduce that

ST (AA0E,  (©)

e Ked! < % [ a9 a1 [olen)
( p° + m® + E’/4 ]* 1
(6% w = B+ 7] =

% [ B+ m® -+ E/4
(k + m* — 1E°® + KIE

] Trt [elB)galR)].
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The boundedness of K may thus be inferred from
that of the operator with kernel

& [: p + m? +E2/4 :l%
@ + m* — £ + pib”

Mp, ¥ =

1 [ B+ m® + B4 T
p =B LGE + m® — LB + LE®
on the Hilbert space of (one-component) functions

g{p) with

[ oo v < +=.

We now use an inequality for the norm of an op-
erator which is our main mathematical tool in this
paper and is derived in the Appendix. Denoting by
|M| the norm of the operator with kernel M{p, k)
we have

a1 < sup [ 2, B o) d'%/o(r)

for any o(k) > 0.

If we choose
® = [ K+ m® + E'/4 ]*
TN EF - B+ EE
kb) k'+ m’ — E°/4
(}cZ + a2)2 (k‘.) + ”L2)§
and majorize M(p, k) by replacing (p — k)™* by
(p — k)™* we can carry out the integrations to obtain

W + m*/a)
Y + (m* — 1E)/d’

I 2 y‘z
X (1 +EJ_2> (y‘can" s ])

¢ m .
< 2r (m ~ 1) ° @

X

KT < 1] < swps

This result already imposes a restriction on the
values of E for which (5) is soluble,

(m* — 1B%/2m* < 2(’/47)°,

to be compared to the nonrelativistic Coulomb
spectrum

m’ — 1B, 1 (e2

2
om® 4 5)’ n=123

We are using rationalized units in which & =
e’ /4r = tir. Writing K(E) to indicate the depend-
ence of K on E we observe that, according to (7),
[1 — AK(@]! is bounded and analytic in \ for
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A| < 1/2a. Now it is straightforward to verify that
[K(E) — K(0O)]'[K(E) — K(0)] is a Schmidt operator
(i.e. has a square-integrable kernel) on 3¢, although
K (E) isnot.{Thisis because the large momentum con-
tribution of K(E) is cancelled by that of K(0). The
reason for considering (K (¥) — K(0)]'[K(E) — K(0)]
rather than K(E) — K(0) is that the latter is not
of the Schmidt type because of the singularity of
(p — k)™ at p = k}. It follows® that K(E) — K(0)
is completely continuous and consequently so is
[1—AK(0)] '[K(E) — K(0)]for [A] < 1/2a. Further-
more, from a general theorem’ on completely con-
tinuous operators depending analytically on a param-
eter, it follows that

[1 = MK@E)]™ = {1 — A[L — AK(O)]™
X [KE) — KO} [1 — MK(©O)]™

is meromorphic in A for|A\| < 1/2a. Its poles at
Ay = vy(E) correspond to the eigenvalues of K(E).
Now K(F) is analytic in ¥ in some region containing
the open interval (0, 2m); therefore the v5(E)’s are
analytic® (with possibly several branch points) in
that region. We conclude that only a discrete set
of points of the region can satisfy yy(E) = 1; thus
the energy spectrum can only be discrete.

We turn now to the weak coupling limit. It is
convenient to make the following change of variables

P=eq, ps=c€r, where e = (m’ — E/4)/m,
J@,v) = 1.
For f we have the equation
I, v

_An(e) —iey-q — i€y + vam(l — &) + m
4 ¢+ &+ 2im(Q — o +

Xfm—

—tey-q — iy’ — vom(l — & + m ®
q;z &7 — 2im(l — 62);2)/ + Yus

d’q’ &’ =
4 1_ o — 0) vufw(@, V")

X

where Ay(e) = ay(e)/e and ay(e) is the e-dependent
value of « associated with the solution fy(q, v).
The possibility of assigning to the solutions an index

8 N. I. Akhiezer and I. M. Glazman, Theory of Linear
Operators tn Hilbert Space (Frederick Ungar Publishing
Company, New York, 1961), p. 57.

7See G. Tiktopoulos, Phys. Rev. 133, B 1231 (1964),
Appendix. Definitions of analyticity of operators, etc. are
also given in this reference.

8 See N. Dunford and J. Schwarz, Linear Operators
(SInterscience Publishers, Inc., New York, 1958), Vol. 1,

ec. VII 6.
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N running over discrete values follows from the
discreteness of the spectrum.
We write Eq. (8) symbolically:

fv = An(QK()fy-

It will be shown below that lim,.., K{(¢) = K(0)
in the uniform operator topology (i.e., in the norm),
from which it follows® that lim.., Ay(¢) = A2, where
Ay corresponds to the equation

v = AYK(O)fs. ©)]

It is easy to verify however that this last equation
is equivalent to the Schridinger equation. Indeed (9)
is obtained by setting e = 0in (8),

147,

¢ + m® + 2imw

ffv(q,v) 3 AI\

+m — 2imy’ T+ (10)

i )
X f (q q )2 ’Yufo(q ) /2
The general form of f° is
3 3
fo = l:a' + Z ay: + Z Yy -+ a’Ys] L 274

3 3
+[b'+2b,-v.-+2 ]—I—ng

Q=1 i,i=1

bii'Yf'Yf + bys

where a’, a;, ---
unit matrix. From

1 4 w1 4 1_‘4
_;7%]‘” -;'Y= [Zam—l-aw:' T

i=1 .I

5 ’ S : l+’Y4
+ | 2a + 4 Zau - Z QiiYiY 9

i=1 .i=1

, b, b, --- are multiples of the

and (10) we have that

3
. 1 — -,
= [Zaﬂi +a75:| 27'

i=1

Substitution into (10) shows that a,, a,, a, and a
all satisfy the equation (this corresponds to the
absence of spin—orbit coupling in the nonrelativistie
limit),

2
_m 1
6@ = 5 Av T o

3
q’ dv’ 1 ,
X f(q q) q/z + m2 — zz.mv; a(q ,U). (11)
Finally, setting
#(eq) = (@° + m* + 2imo)(@* + m")"a(q, v)

¢ This follows, e.g., from the discussion in Ref. 8 by
changing the word “analytic” to “continuous”, appropriately.
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we obtain

@+ mt = 150 = 55 [ T o),

which is the momentum-space form of the Schro-
dinger equation for the Coulomb potential

L 2_23:_22&:_"12] _
[—mV - o) =

m

Accordingly, the values of A, for which (10) is
soluble are given by A2 = 2n wheren = 1,2, -+ -;
we have thus shown that as € — O the set of values
of a(e)/e for which Eq. (5) is soluble approaches those
given by the nonrelativistic Coulomb spectrum: lim,_,
ale)/e = 2n;n = 1,2, .-+, . We emphasize that
this result does not exclude the existence of solutions
for which lim,_, a(e)/e = =« sinee « is an accumula-
tion point of the set {2n}. Wick’s “abnormal” solu-
tions® belong to this category. We have nothing to
say in this paper about these possibilities.

It remains now to complete the proof by showing
that

lim [K() — K(0)] = 0.
We write K(e) — K(0) = A(e) + R(e), where
(q, 2] Ao lq’,v")

m 1+ {1
4r° ¢ + m® + 2omw (@ — q')°

1
T@-d)Y + e - v’f}“
1
Tt 4+ mt — 2imw

7 Yur (13)

where the dots indicate the order of matrix opera-
tions. The application of inequalities (6) and (A2)
gives, apart from constant factors,

(49 < sup 67} (q, D)[(¢" + m*)° + 4m**]7?
(q.v)

1 1

X f [(q -4 (- ¢V + 0 — v’f]

X [(¢% + m)? + 4m»"*Pa(q’, v') &’ dv’.
If we take

o(q, ) = r@U + M) + 4m’]7?,
we have

v =)

¢+ Ep — v’

@)
X @+ ) + am

A} < sup (v)

Z 73 dq av’
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-
47e

Y ‘r 1
< oo )
cMe(d) \Jo [(¢* + m) m*]
<sup f v — v’l’_" ) &’ )
w T) [Am%" + Fm*pe®
We have used here twice the inequality
X+Y>eX'Y' 7,

where ¢(y) is a positive number depending on ~.
It now suffices to take r(») = (»° + m*)¥*™" and
choose v and 6 to satisfy 6 + 2y > 2 > v + 28
(e.g., v = 0.7, 6 = 0.61) in order to obtain

[A(e)] < €77 X (const independent of ¢).

0<y <1,

The application of inequalities (6) and (A1) leads
by similar methods to |E(e)| < e X (const independ-
ent of ¢). The derivation is straightforward and is
not given here.

Concluding, it should be emphasized that the
smallness (@ < 1) of the fine-structure constant
is essential for our proof of the discreteness of the
spectrum. For larger values of the coupling constant
one probably encounters the continuum part of the
spectrum of K (possibly related to Goldstein’s solu-
tions) and the situation no longer makes sense at
least in the conventional way of looking at the bound
state problem in field theory. The natural way out
of this difficulty would be to say that as the coupling
becomes stronger one must include more and more
graphs in the interaction kernel to maintain a reason-
able approximation and eventually the perturbation
expansion for the kernel might fail to converge.
This, however, is the notorious weakness of the
Bethe—Salpeter scheme and stays well beyond our
present scope.

ACKNOWLEDGMENT

I wish to thank the members of the staff of the
Physics Department at the Brookhaven National
Laboratory for their warm hospitality. It is also
a pleasure to thank Dr. R. Rockmore for an in-
teresting conversation.

APPENDIX

In this paper extensive use was made of an in-
equality for the norm of integral operators. We
give its derivation here."’

Consider the Hilbert space of square-integrable
functions f(x) over some measure p.

10 Tt is in fact related to the Hilbert inequality. A detailed
discussion of the Hilbert inequality is given by G. H. Hardy,
J. E. Littlewood, and G. Polya, Inequalitzes (Cambridge
University Press, New York, 1959), Chap. IX.
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1 = [ @ du) < .

Let K(z, ') be the kernel of the integral operator
K and ¢ and ¢ any two functions of the Hilbert
space with |¢| = [¢| = 1. Then for any two positive
(measurable) functions o, .(x) we have, via the
Schwarz inequality,

o, k)| = |[ @K@, #)0) duta) duta)

! 3
<A Wl K, 2 22 ) duter )

H
x{ [ oK@, v 28 o) )|

L5

so that the norm of K defined by
K| = sup |(¢, K¥)|; lel =¥ =1
(e ¥)

satisfies the inequality

3
K| < {sup g | K@ )l o) du(x’)}

(z)

1 s
X {SUP;;‘@)‘ f K@y’ 9| o(y') da(y')}- (A1)

{¥}

In particular, if
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Kz, 2)| = |K@', 2)|,

we have (o, = 0, = o)

K| <sw s [ K@ )| o@) du). @2

It should perhaps be emphasized that ¢(z) does
not have to belong to the Hilbert space. Intuitively
speaking, one obtains better upper bounds for |K|
the more o(z) approximates the eigenfunetion cor-
responding to the biggest (in modulus) eigenvalue.
In practice one chooses ¢, .(z) to depend on a
number of parameters and such that the integrals
in (A1) or (A2) are elementary. One then optimizes
the upper bound by varying the parameters. It
appears that quite crude choices for o, ,{z) may
produce useful upper bounds for |K|.

An easy generalization of (Al) is obtained by
using a general (positive) function of two variables
7(xz, z') instead of just o,(x)/o.(z"). The result is

IKt < {Supf QK(.’E, xl)l T(l‘, x’) dﬂ(x,)}%
3
X {S(U? f K@, 9)r ' ) du(y’)}.

A further generalization to operators acting on L,
spaces is also possible.
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The basic functions for a class of the irreducible representations of the rotation groups in n dimen-
sions (R,) are explicitly constructed by an algebraic method in which the basic functions are taken to
be homogeneous polynomials in the variables of E,. The solutions correspond to the hyperspherical
harmonics of the mathematical literature and are of interest for problems exhibiting invariance under
a certain R,. The method is also applied to derive a basis for the infinite-dimensional irreducible
representations of the homogeneous Lorentz group if we then look for homogeneous functions in the
variables of the corresponding pseudo-Euclidean space.

1. INTRODUCTION

HE aim of the present work is to construct

explicitly the basic functions for a class of ir-
reducible representations of the rotation groups in n
dimensions, K,. These functions correspond to the
hyperspherical harmonies of the mathematical litera-
ture.’ The treatment is algebraic and is an extension
of the method for deriving the basic functions for
the three-dimensional rotation group—the well-
known spherical harmonics—in terms of homo-
geneous polynomials in the variables of the corres-
ponding Euclidean space. The algebraic treatment
is an alternative to the analytical treatment of the
hyperspherical harmonics and follows the paradigm
familiar to physicists as the quantum theory of
angular momentum.

As it is also shown in this paper, the hyperspherical
harmonics may be represented as polynomials in
boson creation operators applied to a ‘“vacuum
state,”” in the spirit of the Schwinger’s treatment of
the angular momentum.?

The hyperspherical harmonics are relevant for
problems exhibiting invariance under a certain E,.
A well-known example is the Fock-Bargmann treat-
ment of the nonrelativistic hydrogen atom.® Another
field of application is the theory of the Bethe—
Salpeter equation supplemented by Wick’s stability
conditions, through which an Euclidean metric is
introduced.* Finally, we mention that rotation groups

1 A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G.
Tricomi, Bateman Manuseript Project (Addison-Wesley Pub-
lishing Company, Reading, Massachusetts, 1962), Chap. 9.

2 J. Schwinger, “On Angular Momentum,” NYO0-3071
{Office of Technical Services, Department of Commerce,
Washington, D. C., 1952).

3V, Fock, Z. Physie 98, 145 (19353); V. Bargmann, Z.
Physic 99, 576 (1936).

4 G, C. Wick, Phys. Rev. 94, 1124 (1954).

appear as intermediate symmetry groups for the
classification of atomic or nuclear configurations.®

The present approach may also be applied to study
the representations of the pseudorotation groups, if
we then look for homogeneous functions in the vari-
ables of the corresponding pseudo-Euclidean space.
As an example, the infinite irreducible representa-
tions of the homogeneous Lorentz group are derived
in a close parallelism to the treatment of the R,
group which is a particular case of the above men-
tioned general treatment.

1II. THE CONSTRUCTION OF THE BASIS OF
THE R, GROUP
A.
The rotation group in » dimensions (B,) is the
group of all linear real transformations with deter-
minant +1 that leave invariant the quadratic form

n
= 2k =

aw=]

Ll

Japlals, (gaﬂ = 60:5)- (21)

a,f=1

The group is generated by the n(n — 1)/2 in-
finitesimal rotation operators D,; = —D;, which
obey the commutation relation

[DazS) Dﬂi}
= 'i(éy,,Dn +‘5aaD7‘e bt 5731:)“3 - 555D7“>. (22)
A set of such operators D, is obtained by putting

D.s = zpp — TePa, (,8=1,2,---,n) (2.3)

with

[xax ?;33 = i6d37 Pa = —Za;/axa' (2'4}

M. Hamermesh, Group theory and Iis Application to
Physical Problems (Addison-Wesley Publishing Company,
Inc., Reading, Massachusetts, 1962).
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The group R, has [n/2] Casimir invariants, the
rank of the group R,.° In this work we restrict our-
selves to a single-row representation of R,, that is,
one characterized by the Casimir invariant

n

(n} ]- 2
;o= 5 Z afe
o, =1

2.5)

The Casimir invariant I\ may be written as

I = X' — @-p)’ + ile — Ax-p,  (26)

n being the dimension of the Euclidean space E,
where the inner products appearing in (2.6) are
defined.

Since the operator I™™ conserves the degree of the
polynomials, we will look for homogeneous-poly-
nomials solutions of the eigenvalue equation

Iiﬂ)P)\(xl) Tay "y xn) = >‘P)‘(x1) Ty, "0, xn)' (27)

The homogeneity of P\(zy, 2, * - - , x,) together with
Eq. (2.6) implies that they must be harmonic and
A = k(k + n — 2) where k is a nonnegative integer
which designates the degree of homogeneity of
Pz, xs, » -+ , x,). Then Eq. (2.7) is equivalent to

V:PL(:CU Tgy * y xn) = 0
and

=kl +n—2), k=012 --). (28

" Since the operator V2 is invariant under n-dimen-
sional rotations, and such rotations conserve the
homogeneity and degree of polynomials, we see that
if Pa{wy; @ay -+ , Z,) is an eigenfunection of I™ with
eigenvalue N\, after “rotated” it is still an eigen-
function of I, "" with the same eigenvalue \. So, the
D,.(\) solutions of Eq. (2.7) form a D,(\)-dimensional
representation of the group R,, which is irreducible
since I is a Casimir invariant of E,.

For classifying the D,(\) solutions of Eq. (2.7)
we consider the chain of subgroups of R,

R.DRD DR @.9)

and to each of its members we attach the corres-
ponding Casimir invariant

Iin)y I(n-—l) 1(3) (2‘10)

where

1 4
Iip) = 5 E iﬁ:

o, B=1

(p=34,-,n. (211

_ The basic functions are the homogeneous poly-
nomials in the variables z,, z,, - -+ , ., labeled by

¢ L. C. Biedenharn, J. Math. Phys. 4, 436 (1963).
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the numbers k,, k,—;, ---
system

(p}
ll Pkn ka~1.

, ks m, solutions of the

= kr(kp + P — 2)Pkn,kn—lv'

kaom crkamy

| ®=34 - m 5

LoPiy bnes,oeotnm = MPrha oee kamy '
where

Lo = Dyy = 2,92 — 2Py {2.13)

Furthermore, it is easily seen that the set of non-
negative integers k., k.-, +-- , ks, |m| satisfies the
branching rule

ko 2 Kooy 2 +o0 2 kg 2 |m| 2 0.

In fact, I” = I"™Y + > 22! D? . Since the Duﬂ
are Hermitian, the eigenvalues of Z;’:} D,
nonnegative. Therefore

kn(kr + P 2) Z kv—l(kp—l -+ P — 3)

ork, >k, forp =45, . n. The last inequality
I > |m| > 0 is well known from the study of the
R, group.

For constructing the solutions P 4., oor k0.m Of
Eq. (2.12), we try to relate them to the correspond-
ing normalized polynomials of the R,., group, ie.,
the solutions of the system (2. 12) withn —1 mstead
of n. We then put

Pkn.k»«;‘."-.k..m(xly T2y * " .'22,.)‘
= Co(kn) kﬂ—l)Gkn.kn—x(xl7 Loy ** "g) xn)
X Pku—;.kn—n‘."'.h.m(xh Ty "t ﬁ?"_i) (2-15)

where Cy(k,, k.-.) is a normalization constant. -
Since the P;,“_! kg rte ks, m(xh .'222, Ty, x,‘_l) Satisfy
the system (2.12) for p up to n — 1, we have to do
only with
I{a)Ph.ka-..-".h.m(xli Lay 0, xn)
= n(kn + n — 2)Pi¢n,‘kn~1y"' o xﬂ)’

' (2.16)

.Iu.m(xl)'xzr o

if we take for Gy, x._,(&1, %3, *-+ , Z,) an invari-
ant of all the subgroups of R, appearing in Eq.
(2.9). On the other hand, since P, u_, .o b0im
and Py, . ioes,ee bem AT€ homogeneous of degree &,
and k,.,, G,,,, ,m(xl, Zs, *++ x,) is homogeneous of
degree k, — k,.-,. Hence we put

G‘ﬁ:n,kn‘-n(xl)ah’ e }xn) = Gku.kn—:(R‘n7 xn) (2 17)

En—kn—y
- Ry kn—kn~ l“ll

#=0
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where

R, = (ﬁz xf)%.

b
As pointed out before, Eq. (2.16) is equivalent to
» Tn)

= Colka, ka-1) VoG o (B, 22)

<, 2] = 0, (2.18)

2
vnPkn.k»—h"-.kum(xly T2y ="

X Pkn—:yk»-—n."‘»ka.m(xlj &ay °

which in view of Eq. (2.15) and the harmonicity of
Pkn-—: skneatre ks .m(xl; x2) tt Ty xn-l) beCOmeS

kn~kn~x

> pa R TR 4+ G ke, = 0.
r=0
(2.19)

2k

This equation provides the recursion relations
a, = 0,
u@k, +n — 2 — pa,
+ (bn — kacr — b+ (ke = ooy — 1 + Doy

= 07 (‘»‘ =23, ") (220)
which allow us to write
G = 0, @.21)
0 = (=YTrm/2 + k, — u— )k, — kai)! go
T om Tm/2 — 1 4 k) — knoy — 2u)!
(lu' = 0; 1) A [(kn - kn—l)/zD'
Putting a;, = Tk, + n/2 — 1)/(k, — k.-1)}, we

have for Gy, ;... (R., ) the expression
Gku,k.wx(Rn, z,)

[(kn—l:ij)/'«’] (_)Mr(kﬁ_l_n/z__#_1)Riux:n—ka—:—2u )
2% ) (ky—kpy—2u)!

p=0

(2.22)

The funetion G, &, (E., z.) has the following notice-

able properties [the C}»=:'"*"'(z,/R,) appearing in

property (2.23a) are Gegenbauer polynomials’
which have also analogs to properties (2.23b) and
(2.23e)]:

Grv boer (B 22) = [D@/2 + koo — 1)/2077]
X ROl e /R, (2.238)
&Gt tars By 2) = 26sur pamsBoy 22
— (kn + kner + 7 — 3)0ryt0er—1(Ray x), (2.23b)

7 E. D. Rainville, Special Functions {The Macmillan Com-
pany, New York, 1960).
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R?len.kn—q(Rﬂ-l xﬂ)
= 4‘[Gk‘n+2‘kn—-l(Rﬂ)xﬂ}- (kn +n/2)Gk..+1 .k,.—x—l(Rmxn)]y

(2.23¢)
0G0 (B, 2,)/02:
= — 32,010 nBay 2) (< n),  (2.23d)
3Gy, koo (B, 7,)/02,
= Gippns (B Z0) = 32.Gha-1 0012 (By )
= g(ky + kn-r + 1 = 3)Gromr kue, (B ). (2.23€)

If we now express all the polynomials

=45 ",n

in the form (2.15) and observe that [from Eq. (2.24)]
we see that the present treatment holds also for n=3
if we put v

Ph‘m = ‘yks.m = Cﬂ(kar ]ml)Pm(xis x2)ka.lml(Ray xa),
with

Pkp,kp—n st vka,m

Pm(xly x2) = (27")—%(3:1 :}: 1:1'2)“"[ ]
P Yy = 2,‘,(_)(”.."1),2[(2k3+1)(k3—lml)!]*

2 (ks + |m|)!
. jmi
X @—1—:(—&2—%)-— Gry.1mi(Bs, 5) = Colks, Iml)
. 1m]
X % G, 1mi(Bs, 23), 2.24)

it follows that

Pintosseo ke m@yy Toy o0, 2,) = 2m) ey &£ i)™

X II3 Co(kp, kl"’l)Gk#.ku—x(RlU 33,,), (kz = lm]) (225)

where the G, .,_.(R,, z,) are given by Eq. (2.22).
Normalization to one over the unit hypersphere
yields

Go(km k#‘l)

- 2kp+<p_4>f2[2<k,. + 1/2 = Dk, — kﬂ_i)!]*
(ks + kuer + 1 — 3)!

(=34, -

, M), (2.26)

B.

An important particular case of Eq. (2.25), which
is relevant in the Fock-Bargmann treatment of the
bound states of a charged particle in a Coulomb
field, is obtained for n = 4. The scattering states,
however, are related to the homogeneous Lorentz
group. The basic functions of the R, group are
briefly discussed here in a way that makes easier
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the construction of the corresponding functions for
the homogeneous Lorentz group (Sec. III).

For n = 4, we have to do with the simple chain
R. D R, and the equations (2.12) reduce to

I:DP“m = I1szm = k(k + 2)Plclm)

Iis)Pklm = L2P£:Im = l(l + }‘)Pklmg (2‘2?)
LOPkZm = mP}:lm’
wherek = 0,1, ---;1=0,1,---,k;m= -1, —1 -
1, -, 4L

As pointed out before, the first of Eqs. (2.27) is
equivalent to

ViPun = 0.
The polynomials (2.25) become
P (2:, 22, T3, T4)
= Colk, DYinlxy, @2, 25)Gi 1 (R, )

ol 2 + D& - D]
= 2[ 2+ 1+ D :Icyz,m(xu Tz, Ta)

{{k=1)/21] (_)ix(k — ﬂ)!Rinxi-—i—mx
e 2%l (b — 1 — 2u)!

X (2.28)

The functions (2.28) can be written in a more
familiar form in terms of the polar coordinates of
which can be defined as

z, = R, sin X sin # cos ¢,
z, = K, sin X sin 6 sin ¢,

(2.29)

x; = R,sin A cos 8, r, = R, cos A.

From Egs. (2.29) and making use of

cos (k -+ 1)\
_ 2"([6 + 1) [(kii/?l (__Zu(k _ #)' cos k+1—2p}\
w0 2%ul (b + 1 — 2u)!
k=0,1,2,--), (2.30)
we get
PRy, 6,6, N)
where

4 = [E (aDZT,

=1
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2%k — 1 — DI 2.32)
= ’-2'3k2(k2 — 1)K =2 - (K — D).

[The function (2.31), for R, = 1, was firstly ob-
tained by Fock® and analytically derived by
Kursunoghu.®]

C.

We will now show that the basic functions for
the R, group have in the boson representation the
same expression (2.25).

We define the boson creation and destruction
operators and a vacuum |0) by

a' = 27%x — ip),
a = 2%z + ip),
a; |0y =0, L2, - ,n).

These operators obey the commutation relations

(2.33)

G =

la;, a;] = {"3:: G::l =0
#,i=1,2,:--,n). (2.39)
Expressing I{® and L, in terms of a' and a we get

I® = —a"’ + @2’ + (¢ — 2a'-a

(=34, ,n),

.ot +
—i(a;a; — a20,).

1.
la:, a;] = 8.;;

(2.35)
L, =

Since the commutation relations (2.34) allow us to
interpret the a;, when applied to a polynomial
P(a') |0) as a; = 8/da!, we see that the operators I®
and L, have the same expression in terms of z;, s,
cre, &, OF ala) oo, al. Therefore, the same oceurs
with the basic polynomials Py, .., .--r.6s.m Lhe
solution corresponding to (2.25), normalized in the
sense that

<0F P’:u,knwx."‘.ka‘mPkn.kn—l."‘wksvm [0> = 1
is
Pitumreoninm [0) = @) Hal = da;)™

XTI Cilku, Bumi)Ghy 1 (As, al) [0)  (2.37)

#=3

(2.36)

with

(2.38)

2"“—’“""’(2]{3,‘-1 + u— 3)' (ku - kn—l)!

EH
R | I
b bucd) = | T =T+ 4D Cous — 1 T 0/ F bus + 5 = D)1
8 B, Kursunoglu, Modern Quanitum Theory (W. H. Freeman and Company, San Francisco, 1962).
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The polynomials (2.37) have been used by two of
the authors in the classification of the states of an
n-dimensional isotropic harmonic oscillator,’ in con-
nection with nuclear vibrations.

III. THE INFINITE-DIMENSIONAL BASIS FOR
REPRESENTATIONS OF THE HOMOGENEOUS
LORENTZ GROUP

The present method may be also applied to pseudo-
rotation groups in » dimensions. In the present
section, as an example, we briefly discuss the case
of the homogeneous Lorentz group, in view of its
intrinsic interest.

The homogeneous Lorentz group, as it is well
known, is generated by the six infinitesimal operators
Juw = —J,, obeying

{Jrzﬁ: J'y&}
= UgysTas = Gardvp + Gssdya — Gradp)y  (B.1)

where the metric tensor g.p is taken with g, =
—gi = —g = —gss = 1, all the other components
being zero.

A particular set of those operators is obtained by
putting

J}n = xppv - xypu (3.2)

with
[0 2] = 9. (3.3)

We shall consider the representation character-
ized by the Casimir invariant

I = L 0% (3.4)

In analogy with the previous treatment of the R,
group, the basic functions Y. for the homogeneous
Lorentz group satisfy equations formally identical
to Eq. (2.27), where now L; = }¢;;:J . Asthe L, are
Hermitian and obey the usual commutation rela-
tions for angular momentum operators, it follows
that!=10,1,2,--- ,andm = —[, -1+ 1, .-+, +L

Now the ¥,,. are taken to be homogeneous func-
+ions of the (real) variables x,, %z, %3, %s.

The Casimir invariant I, may be written in the
form of Eq. (2.6) where now, of course, the inner
products refer to the pseudo-Euclidean space with
metric tensor g.;. It follows then easily that ¥iim
satisfy the d’Alembertian equation and the eigen-
values of I, are of the form A = k{(k 4+ 2), where k
is the degree of homogeneity of the ¥n:., which is
complex in general. On the other hand, I, is a Hermi-
tian operator, so A\ must be real, giving to k the two

3 P. Leal Ferreira, J. A. Castilho Alcards, and V. C.
Aguilera Navarro, Phys. Rev. 136, B1243 (1964).

J. A, C. ALCARAS AND P. L. FERREIRA

possibilities

E=v—1; EF=75m—1 (3.5)

By the same reasoning made in Sec. ITA, we see
that the ¢y, form a basis for an irreducible repre-
sentation of the homogeneous Lorentz group. This
representation is usually infinite, because in general
for a given value of k, all the values of { are allowed.

We see that our problem is very similar to that
of the R, group. In fact, L* and L, have here the
same formal expression as in that case. Besides, the
d’Alembertian operator acting on Y. (2s, %2, %3, 4)
gives the same result as VI gave acting on
P (21, T2, T3, Ta), if we replace in ¢1.(21, 22, T3, 24)

(.7 =1, 2, 3)) (3~6)

In complete analogy to the treatment of Sec. IB,
we get

Verm(Try Ty Tay Ta) = T Y@y, T2, 28)Colk, 1)

= (YT — 4+ DE? 2 N
X 3.
2 T — 1 — 2t D | C7

(» real),

T; = 1T Ty — Ty

where
2 2 2 2
R = (:li4 - X = T2 — xa)%-

We wish now to find an equivalent expression for
(3.7) in terms of the polar coordinates (R, 6, ¢, A) of
the pseudo-Euclidean space with the metric tensor
gas here considered. The following parametrization
is adopted®:

z, = rsin @ cos ¢, 0<R< »,

Z, = rsin 4 sin ¢, € A< >, (3.8)

Iy = rcos 8, 0 <,
Reoshy = JR sinh )

x""{Rsinh)\’ r_{Rcoshk 0= ¢=2m

where the alternatives (z, = R cosh )\, r = R sinh })
and (z, = R sinh A, r = R cosh \) correspond to
timelike and spacelike intervals, respectively.

For the timelike case (2} — r* > 0), we get

Yirm = 1 Coll, DR™Y,..(8, ¢) sinh’ A

2 (=)'T(k — u + 1) cosh*™""% \
P> Wl Tk — 1 — 2u + 1)

3.9

#=0
Making use of the relation
cos (k + 1)ix

- (k + 1)2k+1 i (w

#=0

YTk -+ 1 — w) cosh®™ ™% )
220V Tk + 2 — 2u)

(k+1 #= ""’1,1 _'27 "')1‘

(3.10)
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which is easily gotten by power series method, we
finally have

.
1Cok, D) pey (9, 6)

Vi = Tt D

d'’** cos (k 4 1)ix
d(cosh \)'**

From Eq. (3.5), we have two kinds of solutions
(1) k=14 — 1 (v real),

"X sinh* A

(3.11)

.1y (1) 1+1
ay __ % Co ', 1) piv a1 d o8 ¥A
Yoim = _——iy2" R Yz,,.(ﬂ,(b) sinh’ A m,
(3.12)
2 k=»—1 (vreal),
7 y(2) 1+1
@ _ tCo (7, pot . 11+ d 7" cosh 29
Vrim = o BT (0, 8)sinh A G 0

(3.13)

For the spacelike interval, the substitution (3.6)
would be

T; X (] =1,2, 3): (314)

giving for ¥, apart a phase factor, the results of
replacing in Eq. (3.12) and Eq. (3.13)

AN— N+ in/2; R —R.

Ty — 124,

(3.15)

The present approach has the interesting feature
that it gives rise, in a natural way, to two kinds of
basic functions ¢{., ( = 1, 2) for the Lorentz group
representation, according to the alternatives con-
tained in Eq. (3.5). These representations are infinite
dimensional, since for a given value of k, no restric-
tion on [ exists, ie., 1 = 0,1,2, -+, ».

The basic functions .5 correspond to a particular
case of what is known as the principal series repre-
sentation of the homogeneous Lorentz group.*
Using for the constant C{" (v, I) the value

é”(V, l) = il—lziv
X (/20" + 196" +2°) --- ¢ + D)™}, (3.16)

10W, Pauli, Continuous GQroups in Quanium Mechanics
(CERN, Geneva, 1956).
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we have the orthonormality relation'
J[[ wozat, 0, 6, 09882mr(t, 0, 6, 2 sink »
X sin 0 d6dé d\ = 6110 mmr 8@ — ¥'),  (3.17)

if we restrict the real variable » to nonnegative
values. The ¢.%) may be useful for describing the
continuum of positive energy states of a charged
particle in a Coulomb field.

In contrast, the functions ¢,%) are not orthogonal
and for this reason they lose part of their interest.
On the other hand, if we restrict the real variable »
to nonnegative integers, as considered by Dolginov'!
they form a basis for a finite-dimensional repre-
sentation of the homogeneous Lorentz group. In
fact, in this case the series (3.10) becomes a poly-
nomial, and for ] > »

d'*' cosh ¥3/d(cosh N)'*' = 0. (3.18)

Therefore for a given v nonnegative integer, [
can assume only the values/ = 0,1,2, -+, ».

Finally, we notice that the ¢.5) may be put in
terms of Gegenbauer functions,' which are extensions
of the Gegenbauer polynomials C? (cos \) for non-
integer values of p.
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This paper contains an investigation of the algebraic structure and the analytic properties of a
class of normal hyperbolic Riemannian 4-spaces restricted by the following condition: There exists
a timelike unit vector u® such that the Riemann tensor satisfies *R,p.quu® = 0. This condition is
shown to be equivalent to the statement that the conform tensor is Petrov type I with real eigenvalues,
u¢ being a principal vector and an eigenvector of the Ricci tensor. This means that there is no flux of
nongravitational energy relative to an observer travelling with 4-velocity wue.

The eigen null directions (Debever vectors) of the conform tensor lie in a timelike hyperplane
spanned by u* and the two eigenvectors of e, = —Capeqbu? belonging to the eigenvalues with largest
absolute value. The conform tensor is degenerate (type D) if and only if a Debever direction projected
into the rest space of an observer u¢ is an eigendirection of ;.

The complete set of Bianchi identities is examined. It yields an expression for the covariant eigen-
time derivative of e and an algebraic relation linking the rotation and shear of u® to the curvature
tensor of the Riemannian space.

The general results are applied to special Einstein spaces (Rs = 0) admitting a congruence of
timelike curves without shear and rotation. We get a new simplified proof of the theorem that in the
case of nondegeneracy such spaces are static, the curves of the congruence being paths of an isometric
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motion.

INTRODUCTION

E study the class of Riemannian 4-spaces which
admit a congruence of timelike curves with
unit tangent u* satisfying

*Ropedttu® = 0. ()

The condition (1) means that there exists an observer
with 4-velocity 4* to whom the structure of the
curvature tensor appears to be particularly simple.
The fields defined by (1) correspond formally to
Maxwell fields of the electric type' as far as the
algebraic structure is concerned.

Our aim is to exhibit general properties of these
Riemannian spaces without specializing to any sort
of field equation. Therefore we leave the Ricei
tensor as an unspecified object in the equations to be
derived. We are particularly interested in relations
between the curvature of space—time and the kine-
matics of the congruence *. This interest stems from
the fact that in a Riemannian space, there exist
relations between the curvature and the kinematical
behavior of a congruence, no matter whether this
congruence represents the motion of sources of the
gravitational field, or only of test material.

The main tools in our investigation are the time-

* Supported by the U. 8. Air Force under Grant No. 509.64.

t Present address: Universitit Hamburg, 1. Institut fir
Theoretische Physik, Jungiustrasse 9, Hamburg, Germany.

1 By this we mean that at every event there exists an
observer with 4-velocity »* to whom the field at that event
has no magnetic component, i.e., the electromagnetic field
tensor F,p obeys F*,pv® = 0

like congruences and the Bianchi identities. In the
same way as these identities have been proven to
be useful for fields with a distinguished congruence
of null curves, we can expect them to help us in
our problem where a timelike congruence is singled
out. Such congruences are of importance for the
description of a gravitational field in terms of the
history of an observer’s rest space. Though given in
covariant form, this description yields, of course, no
information about intrinsic properties of the field
unless the observer himself is uniquely singled out by
the field. This prerequisite of any useful application
of the concept of congruences is satisfied in our class
of Riemannian spaces and, therefore, our results
will reflect properties of the gravitational field.

In Sec 1 we deal with algebraic properties of the
curvature tensor implied by the defining equation
(1). In Sec. 2 we give the complete set of Bianchi
identities which are, in the case of exterior fields,
analyzed with respect to the triad defined by the
eigenvectors of ¢, (see summary). In the same sec-
tion we also derive the main results of this paper,
which are (i) an equation relating the proper time
derivative of E,, = —R,,.cu’u’ to the Ricei tensor
and to the kinematical quantities of the vector
field %* and (ii) an algebraic relation between the
rotation and shear of »* and the curvature tensor.
In Sec. 3 we apply our results to give a simple proof
of a theorem on exterior gravitational fields admit-
ting a congruence of timelike curves without shear
and rotation.
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TYPE-I GRAVITATIONAL FIELDS

NOTATION

Latin indices a, b, ¢, « - - run from 1 to 4
Greek indices u, v, \, + - - run from 1 to 3 (through-
out this paper we use Greek or numerical indices to
denote nonholonomie components of a tensor with
respect to an orthonormal triad.)
signature of the metric + + + —
equality by definition =
symmetric part F ;) = 5(Fa + F,)
skew part Fi,) = 3(Fop — Fuo)
metric tensor ¢,;, its determinant ¢,
Gabed = Gaclva — GadJse
curvature tensor (Riemann tensor) R,;.q
conform tensor (Weyl tensor) C,,;..
contracted curvature tensor (Ricei tensor)
R,, = R;,,, Ricci scalar B = R:
alternating pseudotensor density 7,5.4, n'** = |g| ™
duality operation, e.g.,

*Ravea = 3Mas Roves, F 5 = %nabchcd
covariant differentiation is denoted by a semicolon
kinematical quantities® for a congruence of time-

like curves with unit tangent vector »”

th, = 6. + uu’) :
tensor of rotation w,, = hiu(,.qhs
vector of rotation o® = 19" “%u,w,.q
scalar of rotation w = (Rw,w™)!
scalar of expansion § = v,
tensor of shear ¢,, = Al(U¢.e) — L6h.AE

scalar of shear ¢ = (%0,,0")}

decomposition of u,,,
= + + 36k, —
Uasp Wap Tap 30Ng UsUp
covariant eigentime derivative F...,, = F....;. u°
for any tensor F...,.

1. ALGEBRAIC PROPERTIES

In this section we describe some algebraic proper-
ties of the curvature tensor which follow from

*Rabcdubud = 0. (1.1)
First of all it is clear that this equation is equiva-
lent to

Rabcdud = 2Ec[,,ub|. (1.2)

? For an introduction to the notion of the kinematical
quantities see, e.g., J. Ehlers, Akad. Wiss. Lit. Maing,
Abhandl. Math. Nat. Kl. Nr. 11, 1961, 798.
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From (1.2) we get by contraction
¢. = h;Ru,; = 0. 1.3)

In order to express (1.2) in terms of the conform
tensor we rewrite this equation using the decomposi-
tion

Rayea = Cabcd -
of the curvature tensor. Making use of the identity
R’ = ¢ + Eu'°

and of (1.3) we obtain by a simple calculation

r 1
gabr[cRd] - ERgabcd

(1.4)

Also this calculation shows that from (1.4) and
q° = 0 we get (1.2). Thus we have

d
Cabcdu = 2€c[aub]'

Theorem 1. The equation *R,;..u"u’ = 0 is equiva-
lent to the conditions

*Cabcdubud = 0, a:nd q,, = 0. (1.5)

Because of (1.5) the conform tensor in our class of
Riemannian spaces is Petrov type I (or type D) with
real eigenvalues. Equation (1.3) means that there
is no flux of nongravitational energy relative to the
observer u°. Since every Petrov type I conform
tensor with real eigenvalues satisfies (1.4) where «°
is the timelike principal vector, we may characterize
our class of fields by the following invariant condi-
tions: The conform tensor is type I with real eigen-
values and the timelike prineipal vector is an
eigenvector of the Ricci tensor.

As a consequence of (1.4) the conform tensor can
be expressed by e,, according to the formula

Cabcd = (1 .6)

For the space projection P.y.q = hRA TR IR, ma Of
the curvature tensor we get

Pabcd = nabpancdr:upur(E“ - %P“)
+ ha[cPd]b - hblcPd]a - %Ehabcdy (1'7)

where P,, = hihiR,, is the space projection of the
Ricei tensor and A,y.4 = hahsg — Rashs.. The Riemann
tensor itself becomes

Rayea = Popes + 4By thay - (1.8

Since the conform tensor is algebraically equiva-
lent to the rank-3 tensor e, we can reduce the
algebraic properties of C,,., to those of ¢,;,. Therefore
we want to find out the way in which the Debever
vectors of the conform tensor are determined by the
tensor e,;.

It is well known that C,,.; determines in general

P,.r qs

_(gabwgcdn - nabpqncdu)uu € .
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four null eigendirections (we call them also Debever
vectors) k° which satisfy the condition®
k1oCo carckinkk® = 0. (1.9)

We are free to choose k° in such a way that k.u° = 1.
If we multiply (1.9) with 44" and make use of (1.4)
we get,

Creak’k’ + 2kpe, kK’
— ¢4 kkk, + ek Kk, = 0.

Now we insert (1.6) into this equation. We obtain

e — 2eoeiyke + kKU, + 2e. kK kst

— 2kwesk, + ek kkk, + MepeNaer ki kU €

For the last term in this equation we introduce
temporarily the abbreviation Y,,. Furthermore we
call s* the projection of k£* into the rest space of u°,
i.e., we define

= 0.

= hE =k +u. (1.10)
Then our equation reduces to (we rename indices)
€p — 28(‘,6;)S¢ + ecdscsdsas,, + Yab = 0. (1.11)

To analyze this equation we introduce the eigen-
vectors e and the eigenvalues )\, of ¢*:

€’ = Nefe; + hoeseh + Nseies, M+ A+ A =0,
ee, = b
If we multiply (1.11) by €%} we have
— (A1 F A)sa€ises + e.ass's.elses + Yoeles = 0,

where the last term turns out to be \;s.es.e;. There-
fore we have

(08" + 2Ny)efs.ehs, = 0,

and, similarly,
(€as8"8" + 2No)ess.eis, = O,
(as8°s” 4 2N\)els.ehs, = 0.

From these equations we conclude that s* is orthog-
onal to at least one of the eigenvectors ¢* because
otherwise the eigenvalues would be equal and, there-
fore, be zero. Let then ejs, = 0. We consider first the
case, where e3s, #= 0 and els, # 0.

Then it follows from (1.13) that

2\ + €us7s” = 0.

(1.13)

(1.14)

Since we can write

3 See e.g., R. Debever, Bull. Soc. Math. Belgique 10,
112 (1959); R. Penrose, Ann. Phys. 10, 171 (1960); P. Jordan,
J. Ehlers, and R. X, Sachs, Akmi Wiss. Lit. Mainz, Abhandl
Math. Nat. Kl No. 1, 1961.
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s* = cos Qe; + sin Qef,

(1.14) implies

(1.15)
M o— Agsin® @ — A co8” @ = 0. (1.168)

These relations lead to a simplification of the last
term in (1.11). Using (1.12), (1.14), and (1.15) we
get after some manipulations

Yoo = M(susy — ha).
With this result we obtain from (1.11) and (1.14)
finally

€p — 28(416;)8: - >\1(hab + Sasb) = 0' (1'17)

Equation (1.16) permits us to derive an expression
for cos@ which determines the relative position
of s* with respect to the eigendirections of ¢,,. We
have

cos’ @ = (A, — N)/(s — A,
sin® @ = (A\; — \)/(\s — \o)..

(1.18)

We observe that cos® and sinQ are real only if
A2 < Ay < Agorif Ay < A; < A, holds; in other words,
if A\, lies numerically between the two other eigen-
values. Because of the condition \; 4+ A\, + A3 = 0
this means that the absolute value of \, is smaller
than the absolute values of A\, and A;. The coefficients
cos®? and sinQ themselves are determined up to a
sign.

Now we consider the case where e{s, = 0 and
e;s. = 0, say. Then s° is collinear with e} and, there-
fore, is an eigenvector of ¢,, belonging to the eigen-
value A;. (1.11) now reduces to

€0 — Ne%s® — (Meley — Nelel) =0

which implies A\; = X, as seen by multiplication with
ee}. Thus we have seen that the conform tensor is
degenerate if s* is an eigenvector of e,. In such a
case §" is necessarily orthogonal to the degenerate
eigenspace. On the other hand it is clear that de-
generacy can only occur when s® is orthogonal to the
degenerate eigenspace because otherwise s* would
not be uniquely determined.

Note that our formulas are correct also in the case
of degeneracy which is deseribed by cos @ = 0.
We collect our results in the following

Theorem 2. If in a normal hyperbolic Riemannian
4-space there exists a timelike vector field »* such
that *C,;..u’u® = 0 then

(A) the four Debever vectors of the conform tensor
lie in a hyperplane S,

(B) 8 is spanned by u* and two eigenvectors of
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€., which belong to the two elgenvalues with:largest
absolute value,
(C) the four null directions are given by

ki = cos Qe; 4 sin Qe; + u°,

k3 = cos Qe; — sin Qe; + u°,

k3 = —cos Qe + sin Qe; + u°,
ki = —cos Qe; — sin Qe + «°,
where
(= x,,)* oo (xs — x,)*
cosﬂ—(———)\a_)\z, sin @ = N — N/

(D) the conform tensor is degenerate if and only
if §° is an eigenvector of €,;. In the case of degeneracy,
formally described by cos @ = 0, s® is orthogonal to
the degenerate eigenspace of e,;.

2. ANALYTIC PROPERTIES

In this section we derive some properties of our
fields from the Bianchi identities. We do not make
any assumption on the sources of our field but
rather leave the Ricei tensor as an unspecified ob-
ject in our equations.

The Bianchi identities, written in the form*

Rabcd;d = 2Rcla:b]’ (2'1)

can be decomposed into three sets of equations (the
sign | indicates that every free index in a tensor
following this sign is projected with the help of A%):

set I  uwuRa." = 2uwR, 1, (2.2a)
set I1 J_uaRa“d;d = J_2u“R¢[am, (2.2b)
set 11T J_Rabcd:d = _L2R¢[a;b]. (2.20)

The number of independent equations is three in
set I, nine in set 11, and eight in set III.

We start with an analysis of sets I and II. For
this purpose we rewrite (1.2) as Ry’ = —2E, U0
and form the covariant derivative with respect to z°.
Then we obtain

Rdabc:cud + Rdob:ud:c
and, using (2.1), we have

2Rbld;alud + Rdabcud
= —E., — 6E., + Ei.u, + Eu,...

If we insert the decomposition B,, = P,, — E‘uu,
of the Ricci tensor into the last equation we get
after partial integration

* This form of the Bianchi identities is valid only in a

4-dimensional space; see W. Kundt and M. Triimper; Akad.
Wiss. (Mainz) Abhandl. Math. Nat. K. Nr. 12, 1962, 970.

= _'(Eabuc - Eucub);cy
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E.uub + -Eub;a - Pgud:u + Eab - Pab + Euaub-
+ 2Euu, + Riwu’* + 6E.
- E:ub;c - E:;cub = 0. (2.3)

From this equation we obtain set I of the Bianchi
identities by multiplying with «® and projecting the
result into the space orthogonal to %°. Here and in
the following formulas it will be convenient to use
the tensor D,, = E,, — P,, = —Pa..h"°, which is
obtained from the space projection of the Riemann
tensor by contraction. We have

mD:,, — Db, — 3D, = 0. 2.4)

In order to obtain set II, we project (2.3) into the
space orthogonal to »° and form its symmetric and
its skew part. This procedure yields

1 D., — Diwnye — Elaosye — Platsy. + 6Ea,
— 26P, + Puaeo™ + Eoa + 36hs) = 0, (2.5)
and
Ew., + Efaonc + Efwne — Plaoye
+ Plivyic — Pasa™ = 0. (2.6)

Equation (2.5) relates the space projection of the
covariant eigentime derivative of D,, to the Riemann
tensor and to the kinematical quantities. (2.6) has
the remarkable feature to be an algebraic condition
relating the shear and rotation of «® to the curvature
of space-time. It is clear that this equation will be
useful in the investigation of gravitational fields
which belong to the class treated here and which have
a congruence with shear and rotation.

Taking the dual of (2.6) we obtain the equlvalent
relation

D’ + 2P%° + 7" Do .t = 0. 2.7

To analyze set III of the Bianchi identities we
insert (1.8) into (2.1) and form the space projection
of the resulting equation. Then we have after some
simplifications

nabpuncdnuyur(E" id %P" ;d)

- nabmncdnupudu’(E“ - %Pu)
+ J—(hc[an]d):d - (hd[an]c):d - %E'dhabcd
- %-LEhabcd;d - Eacub + Ebcua = 2_LR¢[¢;(,]- (2.8)

The equations (2.4), (2.5), (2.7), and (2.8) are the
complete set of Bianchi identities.

So far we did not make any assumption on the
source of the gravitational field apart from (1.3)
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which is an immediate consequence of our basic
assumption (1.1). Since we are mainly interested in
the investigation of exterior solutions of Einstein’s
field equations we now specialize our formulas to
the case of vacuum fields. For the remainder of this
section we assume R,, = 0. It turns out to be con-
venient to use the eigenvalues A, and the eigen-
vectors e, of ¢,; as introduced by (1.12). Furthermore
we define the Ricei coefficients

(3

a
Yurp = €ua;c€.€py

and the nonholonomic components of the gradient
of any scalar S with respect to the eigentriad of e,;:

S, = 8....

The complete system of Bianchi identities reduces
then to (in the following formulas no summation
over repeated Greek indices!)

Set I )\u.u + (xu - )‘v)Yuvv + ()\# - xI))‘YMMJ = 0) (2'9)
where u, v, p are unequal,
set IT A, 4 O\, — 20, N, + 0.\, + 0\, =0, (2.10)

M = Néiey + 30\ — MNw, + §h0, =0, (2.11)
3w, + (A — Mo, = 0, (2.12)
p, v, p = 1,2 3 and eyclic,
set IIT  (As — A)vaie
= Ay — Ag)vass = (M — Ao)yies, (2.13)
Mo+ = My + = N, =0, (2.19)

where p, v, p are unequal.

In these formulas we use tensor components in
the nonholonomic system e2, i.e., we define
U, = U8,.

e a b . a
Ouy = 06,6y, W, = W€,

Since we are dealing with the Bianchi identities for
exterior fields set I is a consequence of set III;in fact,
(2.9) follows from (2.14).

It should be noted that (2.13) and (2.14) do not
contain the shear, expansion, and rotation of u°.
These equations are in perfect analogy to those in
the case of static exterior fields,’ which are a very
special case contained in the class of fields treated
here.

3. APPLICATION: NORMAL HYPERBOLIC
RIEMANNIAN 4-SPACES ADMITTING A
CONGRUENCE OF TIMELIKE CURVES

WITHOUT SHEAR AND ROTATION

We start this section with some general remarks
about the type of space under consideration and

5 Compare P. Jordan, J. Ehlers, and W. Xundt, Akad.
Wiss. Lit. Mainz, Abhandl. Math. Nat. KI. Nr. 2, 1960, 64.

TRUMPER

then we show how the preceding results can be
applied to these fields.
Since we assume ¢ = 0, w = 0 we have

3.1)

The Ricei identities, applied to this formula, then
yield

—%Rdubcud = %o.lchbla + 'lségu[bucl + E.puc
which simplifies to

1 4 _ 1 4
— 3R = 30 4hhe. + Eaptte).

1 .
Usip = 50R — Ul

(3.2)

To replace the term 6 k¢ we go back to the definition
6 = u°,, and form

0.-1 = ua:ad = ua:da + Rcada ¢
= %(ehg);a - (uaud):a + R;uc-
From this it follows

hfﬁ,d = %q:' (3.3)

This means that under our assumption ¢ = w = 0
the expansion scalar is constant on each hypersurface
orthogonal to the trajectories of «® if and only if »*
is an eigenveetor of the Ricei tensor. From (3.3) and
(3.2) we get

—Rdabcud = ha[qu + 2Ea[buc]' (3‘4)

With the last two equations in mind we can make a
general statement on the conform tensor of these
fields.

Theorem 3. The conform tensor of a normal hyper-
bolic 4-space admitting a congruence of timelike
curves K without shear and rotation is Petrov type I
(or type D) with real eigenvalues. The tangent
vectors of K are principal vectors of the conform
tensor.®

To prove this theorem we remark first that it holds
true for any timelike congruence withe = § = w = 0.
This follows immediately from (3.3), (3.4), and
Theorem 1.

Assume now we are given a congruence with unit
tangent vector 4° such that ¢ = w = 0. Then we
consider this congruence on the same manifold to
which we assign a conformally transformed metric.
It is clear that the conditions ¢ = « = 0 still hold
true with respect to the new metric. However, by
a suitable choice of the conform factor we can arrange
that the expansion scalar with respect to the new
metric also will be zero. Therefore the conform tensor
has the algebraic structure (1.4) and since this state-

6 This theorem together with Theorem 1 generalizes and
completes a theorem by Ehlers in Ref. 2, p. 811.
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ment is invariant under conformal transformation
C.».c has this structure also in the ease 8 # 0. This
proves our theorem.

Now we turn to the consideration of special
Einstein spaces, i.e., we assume R,, = 0. Equation
(3.4) shows that then our field satisfies (1.1), the
basic assumption of this paper. Our main objective
is to give a proof of

Theorem 4'. Any four-dimensional nondegenerate
special Einstein space which admits a congruence K
of timelike curves with vanishing shear and rotation
is a static field, i.e., K has necessarily zero expansion
and its acceleration vector 4" is Fermi propagated
along «*(hli, = 0).

To prove this theorem we show first that there
exists a timelike conform vector which is hyper-
surface orthogonal, i.e., a vector £* satisfying

- %gc:cgab =0, rannbar = 0.

Then we prove that a special Einstein space admit-

ting such a vector field is flat unless £°., = 0.
Assuming that the three eigenvalues A\, are un-

equal we get immediately from (2.10) and (2.11)

A+ o=0 (3.5)

E(a:b)

and
(3.6)

where the ¢, turn out to be the nonholonomic com-
ponents of %, with respect to the eigentriad of e,,.
Now we form the derivative of the equations (2.14)
with respect to the eigentime. A straightforward
calculation and the use of our previous results
yields

¢
€, = €U,

(@) =0,
which is equivalent to

3.7

This means that %" is Fermi propagated along u°.
From this fact and from ¢ = w = 0 it follows that
u® is collinear to a conform vector as shown in this
way:

We compute

ﬁ[uu“ = 0.

? M. Triimper, Z. Physik 168, 55 (1962).
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ua;c = (ud:bub):c = (uﬂ;t).
- Rdabcudub + %ehab(%oh: — ’l),buc)

and take the skew part of this equation. Then we get
because of (3.1) and (3.7)

. — 1 .
Ulaser = _ioulauc]

which, by virtue of (3.3), can be written as
— 3(6ui) e = 0.

Therefore w1, — %6u, is the gradient of a scalar W and
one checks easily that & = e"u, obeys £u.,, —
18 .00 = 0.If § = 0, then we have £°,, = 0 and &,
is a Killing vector. In this case the field is static. If
6 # 0 we know that £, is a conform Killing vector.
Then we choose a time coordinate ¢ in such a way
that it is constant on every hypersurface orthogonal
to u®. The metric takes the form

G = (g, dz* dx’ — dt*) = (G — dt}),

where ¢ = ¢(z°) and g,, = g..(z"). This means that
the metric is conform to the direct product of a
positive-definite Riemannian 3-space Gand the ¢ axis.
In such a case the conditions B,, = 0 require G to be
a space of constant curvature unless d¢/dt = 0.
Therefore, since the direct product of a three-dimen-
sional space of constant curvature and the real axis
is conformally flat, our space—time is flat. The only
way to exclude such a trivial case is to assume
3¢/t = 0 which is equivalent to § = 0.

Note added in proof: It has been shown by Dr. W.
Kundt (private communication) that the exterior
Schwarzschild solution (which is Petrov type D)
admits a timelike congruence with vanishing shear
and rotation, but with nonvanishing expansion.
Therefore Theorem 4 may be stated in a simpler
form as follows: If a special Einstein space admits
a timelike congruence with vanishing shear and
rotation, then it is either static or it is type D.

u[a;b]
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Einstein’s field equations with incoherent matter are solved for the case of homogeneous space-
time, i.e., for metrics allowing a four parametric simply transitive group of motions. Two families of
new solutions are obtained by use of a spinor technique, As a special result a proof emerges for Godel’s
theorem, which states that there exist only two homogeneous sclutions of Einstein’s field equations
with incoherent matter and rigid rotation, namely the Godel cosmos and the Einstein static universe.

L. INTRODUCTION

E begin with a brief summary of a method
previously used''® for solving Einstein’s field
equations, which will then be modified by the use of
spinor techniques.
Suppose in g four-dimensional differentiable mani-
fold M with the coordinates z°, ', 2°, z* we have four
contravariant vector fields

= Eia(xk)a (11)

where @, b, --- = 0, 1, 2, 3 label the vectors and
i, k, -+ =0, 1, 2, 3 the coordinates. Suppose further
that the condition

det (£,) # 0 (1.2)

holds everywhere, and that the functions &,(z%)
satisfy the equations

aE [ 2% M E su i~ Cubcskcr (13)

where a comma denotes the partial derivative, and
the constants C,,° have the properties

Cabc -+ Cbac = 0; Cfbaccd! + C!cacdﬁf + Cfdacbcf = 0.
(1.4

Then we say that we have a four-parametric simply
transitive group operating in the manifold. This
mesans that there exists for any two arbitrary points
P and @ of M one and only one transformation of the
group which carries P into €. C,,° are the structure
constants of the group, (1.4) are the Jacobi identities,
and the vector fields £, are called the infinitesimal
generators of the group.

The invariant vectors of the group are defined by
the equations

fiaekb,j - eibg}'ka.i =0 (1.5)

10, Heckmann and E. L. Schiicking, “Relativistic Cos-
mology,” in Gravitation edited by L. Witten (John Wiley &
Sons, Inc.,, New York (1962).

2], Ozsvzith Akad. Wiss. Mainz, Abhandl. Math., Nat,
KIl. Nr. 13, 1962

which must hold for each « and b, with the proviso
that

det (¢',) # 0 1.6)

in the whole manifold. If we impose the conditions
e’ (xt) = ¢,(z%), where 2% are the coordinates of
some arbitrarily chosen point in M, we have for the
functions e’,(z*) the equations

1.7

as a consequence of (1.3) and (1.5). By means of the
equivalent equations

i b b
3,33,‘=65

e eb,—ebea,‘= -—C,,,,ec,

(1.8)

we can define four covariant vector fields ¢°; which
then satisfy the equations

a & ']
or e.6,=§;

1.9

ea,"k —_ eak,,' == '—C,,c“eb etk
and the condition
det (¢°;) # 0 (1.10)

in the whole manifold.*** ¢°; are the reciprocal vectors
of the group.

The transformations of the group carry the vector
fields ¢’ and ¢°; into themselves. We have therefore
an invariant tetrad of contravariant vectors e’, and
an invariant tetrad of covariant vectors ¢°; in each
point of our manifold M, and it is possible to assign
unique tetrad components to each tensor, e.g.,
T'.1, by the equations

(1.11)

T°,. are in general functions of the coordinates; but
if T%,. are constant we call T',, invariant with respect
to the group.

We now extend our manifold M to a Riemannian

3 k1
T ¥ = e T 58 ke ; Or Ta(,c = e“,»T'He € ¢

3 1. P. Eisenhardt, Continuous Groups of Transformations
(Princeton University Press, Princeton, New Jersey, 1933).

+ A. Taub, Ann. Math. 33, 472 (1951); A. Z. Petrov,
Prostranstva Einsteina (GIPhML, Moscow, 1961).
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space B by introducing a nonsingular symmetric
tensor g¢;, as a metric. Defining g™ by

g”‘gu = 51 (1-12)

and assigning tetrad components in accordance with
(1.11) we have

S, , .
Joo = € g’y = eut's, g~ =€ ,9"¢", = e’ (1.13)

and

7 he = 82, (1.14)

and
(1.15)

To the raising and lowering the indices in B with g™
and g, there exists a corresponding raising and
lowering of the tetrad indices by means of the tetrad
metric g*° and g.,. If g are constant, and we will
make this assumplion henceforth, we call B homo-
geneous.

We now show that the covariant derivative with
respect to g, can also be expressed in the tetrad.
We define the Ricci rotation coefficients by

h
Gix = €"ga€ i.

(1.16)

where the semicolon denotes covariant differentia-
tion with respect to the metrie, and

— ik
Aabc - eai;ke € c)

(1.17)

1 b
€ii = Gik€a = FJupf j-
From
Gavik = (eaie’b);lc = eaz’;lceib + e’aebi;b = 0

it follows that A.,. has the property

Aabu + A—bac = 0 (1.18)
and therefore the following identity holds:
Ay = Aa[bc] + Ablca] h Ac[nb]- (1-19)

From (1.16) and (1.9) one sees immediately that

Aupel = oty 1846 = €ag11€€c = —3Chea, (1.20)
where
Crea = Coo’fua .21
and so we have
Ape = —3Chea + Ceap — Cur).  (1.22)

The covariant derivatives of the tetrad vectors are
given by

i
€k

(1.23)

which immediately follows from (1.16). The co-
variant derivative of a vector u; = wu.e”; which is

_ b i e a — a b e
= A4,.6 €%, € = A’ i€
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invariant (u, constant) is given by
Upe = Ug € €%y Yo = U €65, (1.24)
where
Uaw = U A s (1.25)
Using the Ricei identity
Caritim = Cakimit = ~—€.Ritim (1.26)

one can caleulate the tetrad components of the
Riemann tensor, which turn out to be

Rabcd = AfucA!bd - A!adAfbc + Auchdf- (1'27)
One defines 7,,.. by the equation
Nabed = ('—g)*éobcd) (1-28)

where ¢ = det (g.,) and .. is totally skew sym-
metric and €22 = 1. One then defines the tensor
R*,,.. by the equation

R*pes = $Bo""ncay (1.29)
The cyclic symmetry of the Riemann tensor
Raea + Bacas + Bonse = 0 (1.30)
can be expressed by the equation
R*,." = 0. (1.31)

Substituting (1.27) into (1.31) one finds by a short
straightforward calculation that

R*abcb — %ncfnhcdfaoghd = () (132)

and this is simply the Jacobi identity, as can be seen
from (1.4). Thus the cyclic symmelry of R ,u.. is equi-
valent to the Jacobi identities. This fact is of import-
ance below.

The tetrad components of the Ricei tensor are
given by

Rbd = gacRabcd' (1'33)
Using (1.27) we get the expression ‘
Ry = A/, A% — C,/A%,, (1.39)
where
A%, = g Ap.. (1.35)

Einstein’s field equations with incoherent matter are:

(1.36)

where B = g™R,,, A is the cosmological constant,
and A > 0 is the relativistic constant of gravitation
multiplied by the density of the incoherent matter.
These can be written in tetrad eomponents as follows

Rab - (1 -37)

Ry — 3Rgu + Agu = — Auuy, u:’ui =1,

3Rgs + Aga = —Auu,, uu’ =1,
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where B = ¢"R;,

9’ R.; and u, is defined by
(1.38)

Since the terms on the left-hand side of (1.37) are
constant, it is easy to see that A and u, are also
necessarily constant. (To prove the constancy of 4
we raise b and contract with a). This means that
in a homogeneous space-time, the density of the in-
coherent matler is constani and the velocity vector of
the matler s an invariant vector of the group.

The problem of finding homogeneous solutions of
the field equations (1.36) turns out to be equivalent
to the problem of solving the algebraic equations
(1.37). We deal with this algebraic problem in the
next paragraphs, but at the moment we give some
additional formulas which we need later. From the
twice-contracted Bianchi identities (R, — 1R6%) =
0 and from (1.37) it follows that «® ., = Oand u, ,u"=
0. These conditions imply (as can be seen from their
tensor equivalents) that the expansion vanishes and
the world lines of the maller are geodesic. Writing
out the first of these equations more explicitly we
get

— k]
Uy = UE ,.

“'quafa = '—quafa = ——u!k, = O,
(1.39)

ua @ = u/Afaa

where we introduced the vector k, defined by

k/ = Aa;a = Cafu- (1.40)

Equation (1.39) means that &, is either perpendicular
to u, or zero. The second equation yields

ua:bub = ‘,—z‘in(bc)’ufbuc = —Ca(bc)ubuc = (. (1.41)

Since the expansion vanishes and the world lines
of the matter are geodesic, the tetrad components
of the shear tensor’ are given by

0. = U (hence ¢, = O). (1.42)
If the shear vanishes, i.e.,
Oap = UGy = u’A;(ub) = u!C;(ab) = O, (1.43)

then the world lines of the matter are group tra-
jectories, since u(, 5, = 0 are the Killing equations
The tetrad components of the rotation vector are
given by

abed

a.
ubwcd;

W™ = &g (1.44)

where
(1.45)

— e — 1 f
Woa = Uy = WAseay = —3Ceau’.

After these preliminaries we come to the algebraic
problem of solving the equations (1.37).

OZSVATH

2. SPINOR FORMS OF THE BASIC EQUATIONS

In this paper we use spinors merely as an algebraic
device. Little of the standard theory is used beyond
the notation. See for example Refs. 5 and 6.

We have two different ways to solve the algebraic
equations

Rab = —Auaub + (A + %A)gab: uaua = 17 (2‘1)

which are trivially equivalent to (1.37). In method (?)
we regard the structure constants C,;° as given and
the constants g., as unknown, and we use Egs. (2.1)
to determine these unknowns. In method (%) we
regard the g.’s as given and the C,,”’s as unknown
and we use the equations (2.1) and (1.31) to deter-
mine these unknowns. The first approach has been
used in® where some solutions of the field equations
in vacuum and also with incoherent matter are
given. This method is only adapted to finding the
solution, if such exists, belonging to a given group,
and to study the properties of this solution. However,
it does not allow us to make general statements
about homogeneous solutions. Consequently in this
paper the second approach is chosen.

Suppose we have a homogeneous space given by
gin = € 0a€’x With the signature —2. Then we can
always find a linear transformation with constant
coefficients A°,. such that g,.,c = A%.gad’ =
diag (1, —1, —1, —1). Then we can write g, in the
form g;, = € igars€ & Where ¢'; = A* ¢ and
A% A%, = 8, or A°,.4°", = 8°. The vectors ¢*’;
satisfy theequationse® ; , — "', ; = —Cy..*'€¢" €y,
where C,.,.* = d4°.4%.C,°4° .. That means that
the ¢*’; are the reciprocal vectors of the same group
a8 €°;, since the structure constants of a given group are
only determined up to linear transformations. There-
fore we can suppose without loss of generality that
g already has the form

= n, = 7 = diag (+1, -1, —1, —1).
2.2)

The tetrads e, and ¢°; are fixed by (2:2) only up to
the transformations of the homogeneous Lorentz
group. We could still choose instead of e*; the tetrad
¢*’; given by e*’; = L* ,¢°; where the constants L*,
satisfy the equations L*' L yn.s: = 7. We could
use these transformations to simplify the structure
constants or the vectors %, and k. and try to solve
the algebraic problem in this tetrad. But it appears
to be easier to use a null tetrad and its related
spinors.
" SR, Penrose, Ann. Phys. (N. Y.) 10, 171 (1960).

§ W. L. Bade and H. Jehle, Rev. Mod. Phys, 25, 714 (1953);

E. M. Corson, Introduction to Tensors, Spinor, and Relativistic
Wave-Equations (Blackie & Son, Ltd., London, 1953).

gab — gab
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We introduce a null tetrad ¢4, as a special linear
combination of the original orthonormal tetrad,
namely

a'iAA' = eiaa-aAA’ (2-3)
o = o4 €55 2.4)
where
10 o 1
1 {o1 1 o
a - —— 2.5
Taar = (/o loi—i o 2.5)
10 0 -1
10 0 1
1 jo1 -5 o
AL — . 2.6
T 4/2001 i o @6)
10 0 —1j

In Formula (2.5) [(2.6)], a is the row (column) index
and the pairs A4’ (4, A, - -+ = 1, 2) are the column
(row) indices, related to the indices 0, 1, 2, 3 by the
following correspondence

a 0 1 2 3
AA’ 117 12/ 217 22'.

(The numerical values of A and A’ are independent
of each other.) These matrices are taken from the
forthcoming book by Penrose and Rindler’ (see also
Ref. 5). They are used to translate the tensors of
the Minkowski space into spinors.

2.7

Since det (6°44/) = 7 and det (¢**’,) = —1q, it
follows that
det (6'44.) # 0 and det (¢**’,) # 0. (2.8)

The equations corresponding to the equations (1.8)
are

j A4d’ i ] BB’ B ¢«B’
O"AA'G' K = 6," a-nd O"AAIO' i = 6‘46,1'.

2.9

Using o¢'44. and o**’; as basic tetrads, the tetrad
components of the tensors of our Riemannian mani-
fold become spinors—strictly speaking, dyad com-
ponents of spinors (see Ref. 8). The translation is
given by such typical equations as

A4’

TAA’ — Ti k 1
BB'CC' = O i1 %10 BB'T cc’y

(2.10)
Tikl = ajAA’TAA’BB’CC’a'BB’kacc’l;

which are analogous to the equations (1.11). We note
that this is the usual null tetrad formalism except
that in place of each single tetrad index we write a
pair of “spinor” indices AA’. The advantages be-
comes apparent below. It follows further that

7 R. Penrose and W. Rindler, Application of Spinors to
Relativity (Cambridge University Press, London and New

York, to be published).
8 K. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962).
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A’

AAd’ A a b e
T°" gprcer = @ oI350 BB0 cery

2.11)
% = a'aAA’TAA,BB’CC'G.BB'MTCC’c'
Equations (2.11) give the correspondence between
the two sort of “tetrad components.” The invariant
tensors of our manifold evidently have constant

spinor components. For example

ab AB A'B’
N €re €

,  (2.12)

Nab <> €4B€A’'B’,

A'B

B ’ .
where €5, €45 and €7, € are skew symmetric

and

12 12’
€12 = €113y T € T € = 1.

(2.13)

The raising and lowering of spinor indices is carried
out according to the typical rules

¢ = %5 ¢s = ¢'ean, 2.14)
V= e, Y= e
If
F. = —F,, (F, real), (2.15)

then the spinor F,,.z5. <> F., can be split in the
following way

Faapp: = 3Fasears + Faopeas), (2.16)
where
F p = Fp,4. (2.17)
We have used here the notation typified by
bascr = Parmic (2.18)

for the complex conjugate spinor. (In this equation
A = A’, ete., numerically.) Since the quantities 4,,.
are real tetrad tensors and skew symmetric in the
first two indices, the spinor A 4:88¢cc’ <> Au. Can
be written in the form

Asapscer = %(AABCC'EA'B' + AA’B’C”CEAB)) (2-19)

where Aizcc/, which we call the “Ricei rotation
spinor,” has the symmetry property

Aspcer = ABACC’- (2-20)
It is convenient later to split this further, thus:
AABCC" = aupcer + %(GACQBC’ + fBCaAC")) (2-21)

where the spinor a,zce: is totally symmetric in the
unprimed indices:

QaBccr = QaBoye

and o, is defined by

B
Qacr = AAB c’e

2.22)
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The spinor a,c. can be split into Hermitian and
anti-Hermitian parts:

(2.23)

Quer = kAC’ - iﬂAc'
where

kic =3asc+ac4), pac = oo —aca) (2.24)

and
koo = kqoo = kcary Bacr = Barc = pecar. (2.25)
The following correspondences hold:
_ f
ko = As’ o aa (2.26)
Ms = Afaf = %Az)afnfaw <> paa-

This can be seen easily using the definitions and the
spinor equivalent of 7,,.4 [see (1.28)] given by

Nabed € Naa'BB'CC'DD’

= —i{fAchDGA’D'eB’C' - EADGBCGA'C'GB'D'} (2-27)

(See Ref. 7). The tetrad tensor C,,. [see (1.21)] has
the same skew symmetry in its first two indices as
A,;.; therefore the spinor Cu4 55 cor < Cape Can be
split:similarly:

(2.28)

CAA’BB'CC’ = %(CABCC'GA'B' + CA'B'C'CGAB)
and the “structure-constant spinor” Cypcc- is sym-

metric in its first two indices. Using (1.20) we get
the expression

(2.29)

We see later that in our algebraic problem the
components of the spinor A,pce- are the natural
unknowns. We proceed to write down the equations
which have to be fulfilled by these quantities. Since
R..q are real and have the symmetry properties

Rubcd = _lecd = _Rabdc;

the spinor Ra4:5s.cc-nop- can be split® as follows:

Cagcer = Acumer + @cratnyc.

— 1
RAA'BB'CC’DD’ - E{XABCDGA'B'EC'D' + €cpPaBc'D €L B

(2.30)

+ GAB$A'B'0DGC'D' + GABGCD)ZA’B'C'D'}

and the spinors xasep and ¢uzc-p- (curvature
spinors) have the symmetry properties

buanc o =Osac'p =Paspc.

(2.31)

XABcD =XBACD=XABDC)

Applying this splitting process to the expression

PP’
Russs-coppr = AppaarceA” spoop:

PP’ PP’
- APP’AA’DD’A BB’'CC’ + AAA’BB’PP'CCC"DD' ?

which corresponds to (1.27), we get for the curvature
spinors
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XaBcDp = %(APACP’APBDP’ + APADP’APBCP’)
+ %AABPP’CCDPP,

bagc'p = %(APAQC'APBQD' + APAQD’APBQC’)

+ $4user Con™ 7. (2.33)

[Naturally the right-hand sides satisfy (2.31).] [See
Ref. 5]

Penrose proves® that the cyclic symmetry of the
Riemann tensor is equivalent to the following sym-
metry properties of the curvature spinors

(2.32)

X4BCD = X(CDAB (2.34)
A= %XABAB = %iA’B’A'B, =\ (2.35)
Papcpr = 50'17'.43- (2-36)

According to our remark in 1, the cyclic symmetry
of (1.27) is equivalent to the Jacobi identities.
Consequently the Jacobi identities are equivalent
to the requirement that the Ricei rotation spinor
fulfills the equations which we get if we insert the
expressions (2.32) and (2.33) into (2.34)-(2.36). In
other words (2.34)—(2.36) are the Jacobi identities in
spinor form. [One can prove this statement by a
straightforward calculation translating the equation

* b _ 1 ofe __
R abe fRabfvnc - 0
into spinors, i.e.,
% BB' _ 3 BB'FF'GG’
R AA'BRB’'CC’ - 'Z'RAA’BB’FF’GG"']CC’

and using (2.27) and (2.30).]
Before proceeding with the field equations we
rewrite (2.34) in a more convenient form. We want

first to show that (2.34) is equivalent to
XABCB + XCBAB = 0. (2-37)

We see that

XABCB + XCBAB = (XABC’D -+ XCBAD)éBD =90

and this is equivalent to

X4Bcp + XcBap — Xapce — Xcpas = 0.

Writing down this equation with the indices BADC
instead of ABCD we have

Xsapc + XpaBc — XBopa — XpcBd = 0.

Adding up these two equations and using (2.31) we
get (2.34). This argument also works backwards and
our assertion is proved.

Now inserting (2.32) into (2.37) and using (2.29)
we get

XABCB + XCBAB = Cyorp: KT = 0.

(2.38)
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We refer to the equations (2.38), (2.35), and (2.36)
as Jacobi identities.
We now write down the field equations in spinor
form. The spinor
Rgpppr = EACGA'C,RAA’BB’CC’DD’

can be found using (2.30):

Rppipp = %(XABADeB’D’ — ¢BpB'D’
- ,
— ¢pprep + GBDXA'B'A D’) (2-39)

(see Ref. 5). It is easy to show from (2.34) and (2.35)
that

XABAD = Nepp. (2.40)
Using (2.35), (2.36), and (2.40) we get
Rpspp = —¢sps'n' + Nespenip. (2.41)

The right-hand side of (2.1), written in spinor form, is
~Augsupp + (A + 3A)espesp-, (2.42)

where u, <> u44- and the equation u,u® = 1 has the
spinor form

Uout = 1. (2.43)
The expression (2.42) can be written in the form

—3App Upp: + UppUpp) — 2A(upp Upp

— uBD’uDB’) + (A + %A)GBDGB'D’- (2-44)
From (2.43) we see easily that
$(UpsUpp: — UspUpp') = Yeapepp. (2.45)

Combining these facts we get
—¢sps'p: + Nespesn = —3A(UpsUpp:
4+ uppUps:) + (A + Y A)espes p.
Thus the field equations in spinor form are
N=A+34 (2.46)
(2.47)

We now observe the following facts. If (2.46) is
satisfied then (2.35) is also satisfied, since A and 4
are real. If (2.47) is satisfied then (2.36) is also
satisfied, since the right-hand side of (2.47) is Hermi-
tian (ua- being Hermitian). The spinor form of the
basic equations is therefore:

Saparp = 3AWasupp + uAB’uBA’)-

Capcek® =0 (2.482)

A+ (4 = Ixa"” (2.48b)

Gapapr = 5AWasUps + UsnUsa)  (2.48¢)
ugoutt = 1. (2.48d)
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Our algebraic problem is to solve these equations for
the “unknowns” A pccr, A, A, and uaq-.

As a final preliminary we translate our previous
equations (1.25), (1.39), (1.41), (1.42), (1.44), and
(1.45) into their spinor equivalents. These are found
to be, respectively,

Upar B = %(uPA’APABB’+uAP'A-P’A’B'B): (2-49)

utt = —ug kbt =0, (2.50)
uAA':BB’uBB’ = %(uPA'APABB’
+ uAP,AP’A’B'B)uBB’ =0, (2-51)

P P T
= 1w 4 Apags + Us Apaps
P T
+uPB’APBAA’+uB AP’B’A’A}' (2.52)

[¢44-z5- 1s not to be confused with the ¢’s of (2.5)
and (2.6).] The spinor ¢ 4,455 has the following sym-
metry property

CA4'BB’

OA4'BB’ ™ OaBA'B’ — O(AB)(4’B’) (2-53)

since the trace vanishes. [See (1.42).] The spinor
waa'pB’ <> W, Splits according to the pattern (2.16)
(wap = —wsa). The corresponding symmetric spinor
w4 p is given by

Wap = _%CABCC'U;CC’. (2.54.)

The spinor w**’ <> «* [defined by (1.44)] has the

form

AA' _ 1; ( AB A'B’ -A'B' AB
= 17 {o" "¢ -

€ }uBB:. (2.55)

w

3. THE EXPLICIT ALGEBRAIC SYSTEM

In writing down our equations explicitly we can
still use the freedom that the tetrad is given only up
to the transformations of the homogeneous Lorentz
group. Thus we are at liberty to assume that the
tetrad components of %; with respeet to the ortho-

normal tetrad ¢°; have the form
u, = (1, 0,0, 0). 3.1

It follows that the corresponding spinor is then

given by
-1 (19)
T W2z\ 1)

and (2.48d) is satisfied. We denote our unknowns,
the components of A 4p¢c-, by the following symbols:

ccr
|1y 12 a1 22

3.2)

Ugsr

Apee’: 1‘}{3
K o p T
(12) € 8 a ¥ (3.3)
22 T " A v
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(See Ref. 8). Using (3.2) and (3.3) we get from (2.51)
the equations

‘Y+‘7+ €+€=0)
k—7+7—7=0.

(3.4a)
(3.4b)

The components of the spinors k... and p... de-
fined by (2.24) are

b = [%(p+a>—%(e+a Yr—B)+3E—7)
3G—B) ) 3r+7)—3utn)

[ Yilo—p)—$i(e—?) %z‘(r—m—%i(a%)}
~3iG—B)+¥ila—m) }ily—7)—}u—n)
(3.6)

Note: Whenever in this paper we exhibit a matrix it
will be understood that the first or upper index denotes
the row and the other the column. Looking at the
equation (2.482) and (2.50) we see that we must
distinguish between two different cases, namely

(i) kAA’ # O, (li) kAA’ = 0
which we shall discuss separately.

Case (©): kas- # 0. Equation (2.50) tells us that
k, is perpendicular to u,. Using Lorentz transforma-
tions we can arrange that k, has with respect to the
orthonormal tetrad ¢°; the components

} , (3.5)

Hagr =

(3.7)

k. = (0,0,0, V2r), r#0 3.8)
whence the corresponding spinor is given by
0
kaar = (6 __r>. (3.9)

Comparing (3.5) and (3.9) we see that this choice
of the tetrad allows us to impose the conditions

(0 +p) —(e+ & =2r (3.10a)
(r+9) — @w+a=-2r, (3.10b)
r—Bf+a—7=0, (3.10¢)

without loss of generality. The equation (2.50) is
fulfilled. Using (2.29) and (3.8) we get from (2.48a)
the equations

p—Ftet+ée=p—ag+rv+7 (3.11a)
k=a+ B8 — (3.11b)
v=a+ B8 — 7. (3.11¢)

By now we have fixed our orthonormal tetrad e
up to rotations in the 1-2 plane. Using this freedom
we can annihilate either the u,, or the u, component
of p,. In other words, looking at (3.6), we can require
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that i{r — 8 — (& — #)} is either imaginary or real,
ie.,

=B —-—@-N=F—-f —(a—m
or

(r—B8—@—7=—F—8)+ (a—m). (3.12b)

We now proceed to solve these equations. From
(3.4a), (3.10a), (3.10b), and (3.11a) we get

(3.12a)

vy+7=0, et+e=0, (3.13a)
u = p, (3.13)
Re (p) =r # 0. (3.13¢)
From (3.4b), (3.10¢), (3.11b), and (3.11c) we get
T o= 7, (3.14a)
8 =a, (3.14b)
k= 2& — T, (3.14¢)
v = 2a — 7. (3.14d)
From (3.12) we get
rT—F=—(a—& (3.15a)
or
r+7=a+a (3.15b)
Summarizing our results, we have
cc!
Agpec’: AB - 11’ 12/ 21 227
1 1"2a—7 o P) T
B e = e v (319
where
vy+3=0 et+é=0 Re(p)=r#0
and

r—7+a—a=0, or r+7F=a+a (3.17)

Using (2.29), (2.32), (2.33), (3.16), and (3.17) we get
from (2.48b) and (2.48¢) the following equations for
our problem in case (i):

8o — 2ar + ar) — o6 — p* = A, (3.18a)
8o — 2(ar +ar) — M — p" = A4, (3.18b)
dad — 4lar +ar) +oN — p* = 4, (3.18¢)
ody — p) +4a@— 1) — A =0,  (3.18d)
Nde — p) + dola — 7) — p& = 0, (3.18¢e)

2 — 1)y — pa+ 1)+ ola— 7) — e =0,
(3.181)
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e—plat+ 7+ Na—1)—7vF=0,
(3.18g)
Ra— A+ (v + &2a — 7)

+ a(2¢ — p) — p7f — a5 = 0, (3.18h)

2a — Ao+ (v + ¢QRa — 7)
+aly — p) — pr —ar =0, (3.181)
A+ 14 = Hdaa — o\ — 30°}. (3.18))

Note that from (3.18a) and the condition that 4 has
to be real, it follows that p> — 5 = (0 + p)(p — B) =
0;and since p + 7 = 2r £ 0, we havethatp = 5 = r.
This fact has been used in the derivation of the
later equations in (3.18).

Case (i1): (kaar = 0). From (3.5) and (3.7-ii) we
get the equations

ptr=rc+g (3.19)
Y+B=r+8 (3.19b)
r—B+a—+=0. (8.19¢)

Using Lorentz transformations we can arrange that
r—B8—(a—% =0, (3.20)

which means that u, has the form p, = (u,, 0, 0, us).
This fixes our orthonormal tetrad ¢°; up to rotations
in the 1-2 plane. We still have the freedom to use
these rotations, i.e., spinor transformations of the

to simplify A,gzcc- at a convenient stage of our
calculations. From (3.4a), (3.19a), and (3.19b) we
have

I, = (3.21)

pt+r=¢et+é=—(O+7=—-@w+nrn 322
and from (3.19¢), (3.20), and (3.4b)
T =8, (3.23a)
T = a, (3.23b)
k—v=a—§ (3.23¢)
Collecting our results we have
ce’
Aapcc’: AB 11’ 12/ 21’ 22/

with (3.22) and (3.23¢). From (2.48b) and (2.48¢)
we get the following equations for our problem in
case (ii):
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Ra+B)k+ Bt —ad — plp+ e+ 8 = A, (3.25a)
28+4+ap + a5 — N — pu +v +7) = 4, (3.25b)
w — pp + o\ — aff + 2ei

+ 295 — 2aa — 288 = A, (3.25¢)
w—ph—alu + 7 — 3v)+ 8@ — 28) =0, (3.25d)
vk — du—Np + & — 36 + alf — 2a) = 0, (3.25¢)

ky + @) — p@+ B) + ola — B) + B(F — ¢ =0,
(3.25)

e+ p) —ule+B)+ N8 —a) + @ —v) =0,
(3.25g)

NG+ B —B5 —al —et+ & 4+ vk =0, (3.25h)
vo +v& —ak — BQu —v +79) + & =0, (3.250)
A+ 314 =1{w+ 308 — o\ + pu— 2eu — 2vp}.
(3.25§)
4. SOLUTIONS OF THE ALGEBRAIC SYSTEMS

In this section we obtain all the solutions of the
equations (3.18) and some solutions of (3.25). In the
next sections we give explicitly the corresponding
line elements, which represent two new and two
already known families of solutions of Einstein’s
field equations with incoherent matter.

Case (v): Equations (3.18). We have seen that

p=p=Tr. 4.1)
From A > 0, (3.18a) and (4.1) it follows that
a#0, (4.2)
and from (3.18a) (3.18b), and (3.18¢) that
of = A and o\ = gk, (4.3)

We now observe that

s5%0 and X\ 5 0. (4.4)

For ¢ = 0 is equivalent to A = 0 [see (4.3)]; using
(3.18¢) and (4.2) we get r = &, and from (3.18¢) it
follows that A = —4aa — r°, which violates the
condition A > 0. The equations (4.3) have two
solutions:

A= —¢ 4.5)
and

N =q. (4.6)
Equation (3.18) has no solutions in the case of (4.5).
To show this, we substitute (4.5) into (3.18), using
(4.2) and (4.4), and get the following system:

A =120 —05—1", A+14=214aa+ o5 3r),
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e=v, 1= —a,
oy +28° =0, and 28y + ac = 0,
which is not solvable under the condition 4 > 0: For
oloy + 28°) = (ao)y + 2a(ad) = 2a(—7" + o&)
= 2a(y} +a) = 0> a =0,

which contradicts (4.2).

Thus we are left with only the possibility (4.6).
Inserting (4.8) into (3.18) and using (4.2) and (4.4),
we get the following system:

€= —%, (4.7a)

o2y — )+ 28 — 1) =0, (4.7b)
ol — 7))+ a2y —1r) —rr =0, 4.7¢)
67 = 20& + ar + &7, (4.7d)

A = 6aa — 3(ar + ar) — r°, 4.7¢)
A= 3{—208 + ar + af — r’}. 4.71)

Using (3.15a) inthe formr — & = 7 — a = {, ie,

T=a-+t (4.8)
we get the equations
2y — 1o — 2ta = 0, (4.9a)
—lo + 2(y — r)a = rt, (4.9b)
0 = 4oz + ta + &), (4.9¢)
A= =3+ at — 1, (4.9d)
= 3{la + @)t — 1"}, 4.9¢)

We observe that (4.9a) and (4.9b) is a linear system
in the quantities ¢ and & Since ¢ # 0 because of
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(4.9d) the determinant d = 2[(r — v)(r — 2v) — #}]
must be different from zero. The solution of this
system is given by

rf

T = —21) =’
_r r+ 2y :
20 +N0+2y) -8
One sees by substitution that (4.9¢) is satisfied. From

(4.9d) and (4.9¢) we get

4= rz{ 3L +27)(r—2y)~ £] _ 1}
[+7)+27)— £ —1)(r—2v) — ']
(4.11)

(4.10)

o ==

and

A= _.?f{ Elr27)(r—27)— £] | 1}
2 [0+ 2n—Llle—re—2m—¢1 " )"

(4.12)
Collecting our results we have
cc’
Aspcc’s AB 1 120 21 2
11 & — i T r &
(12) —y & p v o, {4.13)
22 t+a r ¢ a-—t

where o and ¢ are given by (4.10) as functions of the
parameters 7, t and v (y is imaginary). The range of
the parameters is determined by the condition 4 > 0.
(4.13) gives all the solutions of (3.18). Using (2.29)
we can caleulate the components of C,pzcc0-; then,
with the help of (2.28) those of Cas:55/cc-; and
finally, using (2.11), we get C,,.. The nonvanishing
eomponents of C,;° are shown in the following table:

0 —(a+a—20/V2 —ile — &)/ V2
=0 = |la+a+20/V2 @ +oc+d2V2 iy — (0 —&l/2V2 (4.14)
U da—a)/V2 —ily+0—8)/2V2 (2 — (0 + ]/2V3
(8 and 5 have the values 0, 1, 2). We see that the defined by (2.54) has the components
corresponding groups always have an Abelian in- B
variant subgroup. The shear spinor defined by (2.52)
WAB: A 1 2
has the components
- 1| —(@—t)/v3 o (4.16)
A'B 2 0 —(a = 8)/v32
oapa’s’s  AB ; 1 (1’2 2 and thus e — ¢ is responsible for the rotation. We
11 0 —1/24/3 ] note that our solutions always have rotlation since
(g) "'62‘/2 = /20 V3 7/ 20‘/5' 415) 4 = 4 would imply, because of (4.9d), that 4 =

Thus + is responsible for the shear. The spinor w,s

—6{ — 7* < 0! The components of the spinors
kas', waa', and o**’ [see (2.55)] are
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[r 0 ] [ By it}
ksar = ’ Maar = ’
0 —r —it vy 4.17)
A4’ [ 0 Yila — t)}
w = .
—Lia — t) 0

Defining the eigenvalues (,,0 and the eigenspinors
(a)G'AA, Of OGAA’BB' by the equations

(4.18)

(a =0, 1, 2, 3), we get after a short calculation

AA’ BB’ __ AAd’
4 BB' (a)0 = (a)7 (a)C

@0 =0, 10 =0, o=2]|r], o= —2]1]
(4.19)
and, correspondingly,
)O_AA’ _ 1 (1 0) = g4
(0 = \/— = ’
2\0 1
A ( 0 e‘“’)
(1) - i¢ )
—e 0
V2 (4.20)
AA* 1 1 e_”’
)0 = 5 & —1)
UAA _ 1( 1. —e"“")
(3 - 2 __eup _1 y

where ¢'® = 7/|7|. These vectors are mutually per-
pendicular. [o0**’ and (,0**" are not uniquely
determined because of the multiplicity of the eigen-

value 0.] We see that
kAA’F-AA, =0, (4-21)

which means that k, and u, are always perpendicular
to each other.

We now consider the special case
vy =0. (4.22)

Here a, ¢, and 7 are real [see (4.10)]. Using instead of
the parameters r and ¢ the new parameters a and s
defined by the equations

r=a@2 —s)/V2and ¢ = as(2 — §°)/2
we get, from (4.14), (4.11), and (4.12),

0 as@—s)/vV2 0
as(1—5)/ V2 a 0

0 0 a(l—s%)
(4.24)

(4.23)

CBa = Caaﬂ =

and
4 =a@2~-)2" —1), A= —3"@2—5),
(therefore 3 < §* < 2). (4.25)
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We see that in this case u, is perpendicular to u,
and parallel to «® and (;,0°. This means that the
rotation vector is an eigenvector of the shear tensor
corresponding to the eigenvalue 0, which is not true
in general. The line element for this case is obtained
in Sec. 6.

Case (¢1): Equations (3.25). We shall deal only
with the special case

k=0, v=0, a=0 (4.26a)
B=0, p+p=0, e+é=0,v+7=0, p+2=0.
(4.26b)

[Note that (4.26b) follows from (4.26a) and from
(3.25).] Using the freedom (3.21), we can arrange
that

c+5=0 4.27)

and

A+X=0 (4.28)

as can be seen by the following reasoning: From
(4.26), (4.27), (3.25¢), and the fact that A has to be
real, it follows that ¢(A 4+ X) = 0. If ¢ is different
from zero, then (4.28) follows; otherwise we can use
(3.21) to make N\ imaginary. Substituting (4.26)-
(4.28) into (3.25) we get the following system:

4y — wo + pr = 0, (4.299)

o + (de — p)\ = 0, (4.29b)

o — o= A, (4.29¢)

N — = A4, (4.29d)

o — pp — 2(en +vp) = A4,  (4.29¢)
A = 3(ou — o). 4.299)

The spinors g4 4-5+ [see (2.52)] and w, 5 [see (2.54)]
have the nonvanishing components

Cuze = o = (0 + N/2V2,
v = —(p + W)/2V/2, (4.30)
Using A > 0 one sees from (4.29¢) and (4.29d) that
(4.31)

Considering (4.29a) and (4.29b) as a linear system
for the quantities A and ¢ with the determinant
d = 4(—4ey + vp + eu) we have two cases according
tod #0andd =0.Ifd # Oweget A = ¢ = 0and
the shear vanishes [see (4.30)]. We do not consider
this case here: shear-free cases are discussed syste-
matically in the last section. d = 0 gives the equation

(4.32)

p# 0 and u # 0.

dey = eu + vp.
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Because of (4.31) and (4.32), ¢ = 0 is equivalent to
v = 0; therefore we have two different cases:

(4.33a)
(4.33Db)

which we discuss separately. In case (4.33a), (4.29)
reduces to the system

y=0and ¢ =0,
v # 0 and € # 0,

oA —aou =0, (4.34a)
o — pu = A, {4.34b)
A =4 -7, (4.34¢)
A=N -4 A= —-14. (4.34d)

Considering (4.34a), (4.34b) as a system of linear
equations for N and x with determinant given by
(4.34c), we immediately find the solution

A=o,u=pand A =6 —p, A= —14. (4.35)

Introducing new parameters r and s by the equations

p = —1ir and ¢ = irs, (4.36)
we get our results in the form
ce’
AABCCII AB 11’ 127 21/ 22/
11 0 irs  —ir 0
12) 0 0 0 0 (4.37)
22 0 —ir  irs 0

A=r"1-5)>0—1<s<1)and A= —14.
(4.38)

The corresponding structure constant tensor has
the nonvanishing components

_(_4)* 2

2/ (1 —§)P*

AV 1 —
Co® = (2_) m ’ Cy’ =
1 _ __4)* 1 + S
Coo” = (2 1 -
where we replaced the parameter r by A according to
Eq. (4.38). The corresponding line element is ob-
tained in Sec. 7.

We now discuss the case (4.33b). First we introduce
a new parameter p by the equation

= $Ap. (4.40)

Using (4.40), (4.29), and (4.32) we obtain the system
in the following form:

(4.39)

4y — p)o + pr = 0, (4.41a)
uo + (4de — p)A = 0, (4.41b)
eu + vp = 4ey(0), (4.41¢)

ew+ve = —3A@ + 1), (4.41d)
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pu — oA = Ap, (4.41e)
N—u=4, (4.41f1)
& — o = A. (4.41g)

The solution of this system is

!
—i(é) {lp + D — DI + [plp — LI,

v ={2) (o + D6 - 17 - b — 11,
A\ }
p=~i2) 16~ D+ 06+ 01,
i
w=—i{2) (0 - 1 - b+ D),
. E
¢ = ’5(24) (@ + 1) + [ + LI},
. 3
v=3 (24) (@ +1 - e+ D'}, (4.42)
where the parameters A and p have the range
A>0and |p| >1, (4.43)

respectively. (4.42) gives the nonvanishing com-
ponents of the spinor A, zce.. The corresponding
structure constant tensor has the following non-
vanishing components:

Co’ = 34%2p + [p(@ — 1)},

Cot' = —34%2p — [p( — DI},

Co' = 34} 20p@ + DI — [@ + D — 1},
Ca® = 3420 + DI + (@ + D@ — DI},
0, = —Alp — 1), C:)° = Alplp + D', (4.44)

The corresponding line elements are obtained in
Sec. 8.

5. EXPLICIT CONSTRUCTION OF THE
RECIPROCAL VECTORS

In the following three sections, we obtain the
reciprocal vectors and the line elements correspond-
ing to (4.24), (4.39), and (4.44). To this end we must
examine in detail the group structures given by these
expressions. The conventional method of exhibiting
group structure is by the commutator relations

(Xa; Xb) = Cachci (5-1)
where X, = £9/0z' and (X, X,) = X.X, — X,X
(see Ref. 3). These relations correspond to Eq (1. 3)
Using new operators Y, given by

Y, =X,A’, 5.2)
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[see note following Eq. (3.6)], where A°, are constant
and det (4%,) = 0 we get new commutator relations

(Y., Y,) = A% A°C. A Y, = Cu'Y., (5.3)

which give the same group [cf. remark preceding Eq.
(2.2)]. We express this fact by saying that (5.1) and
(5.3) are isomorphic. By suitable choice of A%, one
can arrange that C.,° has one of the normal forms
first given by Lie.® One obtains the infinitesimal
generators 5, of (5.3) integrating (1.3) under the
condition (1.2).* We mention that (1.3) does not
define 7’, uniquely, but using different solutions of
(1.3) only means different choice of coordinates in our
manifold. Having found a set of infinitesimal genera-
tors one obtains the invariant vectors &', of (5.3)
integrating the equations (1.5) [putting &',(zf) =
n'.(z¥) where 2 are the coordinates of some arbi-
trarily chosen point], and finally from (1.8) we ob-
tain the reciprocal vectors &°; of (5.3). The connec-
tion between the reciprocal vectors ¢*; of (5.1) and
those of (5.3) is given by

e",- = Aabébi (54)

which can be seen easily. One can naturally obtain
¢®; by integrating (1.9) directly (if the C,,”’s are
simple enough). Here the remark that different
solutions only mean different coordinates applies
equally.’

In the case where our group has a three-parametric
Abelian invariant subgroup we can always arrange
to have

(Xo, Xx) = 0: (Xn Xz) = 0;
(Xq, Xa) = Caa‘yX-, = XyC‘Ya

(X27 XO) = 07
(a; B,y = O: 1) 2)
(5.5)

Transformations (5.2) of the form

. (A% 0)
A"_(o A

preserve the pattern (5.5), leading to
(Y07 Yl) =0, (Yly YZ) = 0, (YZ, YO) =0,
(Yo, ¥Vy) = AY5(A72P,07,4°%,). (6.7)

Thus the transformations (5.6) are in this case
essentially equivalent to similarity transformations
applied to the matrix C”;. The normal forms (giving
the type of the group) which one can thereby obtain
are essentially given by the roots of the character-
istic polynomial

det (C*s — N8%g) = 0. 5.8)

¢ 8. Lie und G. Scheffers, Vorlesungen ueber Continuerliche
Gruppen (B. G. Teubner, Leipzig, 1893).

(5.6)
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6. LINE ELEMENTS CORRESPONDING TO (4.24)

For the structure constants (4.24), (5.1) has the
form

(Xo, X)) = 0, (X, Xz) =0,
(Xo, Xa) = a(l — %)X,/ V2,
Xy, Xs) = a8 — )Xo + aX,/ V2,

(X, X5) = al — $HX.. 6.1)
(6.1) has a three-dimensional Abelian invariant
subgroup. Therefore our remark—made at the end

of the previous section—applies. The characteristic
equation is essentially the polynomial

(X2; XO) = 07

N —\—181 -3 =5 =0. (6.2)
Corresponding to its roots
N = %(1 - 3): A o= %(1 + 6); (6.3)

B =1[1+2¢0 — )3 — )}

we have to distinguish [in the range of 3 < §* < 2
cf. (4.25)] three different cases:

No # N\, real; (6.4a)
N = A (6.4b)
N = Ar. (6.4¢)
In case (6.4a), A% [see (5.2)] is given by
1 1 00
a0, = 00 (6.5)
10
01

where
vo = VI/s@ — &), 1 = V2\/s(3 — 5. (6.6)
We see that (6.1) is isomorphic to

(Yo, Y1) =0, (Y,,Y)=0, (Y5, Y,) =0,
(Y., Ys) = ar. Y, (@ =0,1,2), 6.7)
where we used the notation
N =1—¢". 6.8)

It is very easy to obtain the infinitesimal generators

7

n’., the invariant vectors &', and the reciprocal
vectors &°; of (6.7) by integrating the equations (1.3),
(1.5), and using (1.8):

100 N 0 00
; 010\ _,. 0 & 0 0
Nas =0 3 €, =a

001 N\2° 0 0 &0

000 1 0 0 0 1
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(n's = &, at the point z* = 0) and ds’ = a {1 —»,7)e ™" (d2) + 2(1 — v e da’da’
1 eO 2.0 0 + (1= e ™ (d2) — () — (da?)),
sy =1 00 g 611

0 0 ™0
0 0 0 1

Using (5.4), (6.5), and (6.9) we obtain the reciprocal (6.1) is isomorphic to
vectors of (6.1) which are given by
gt gt 0 0 (Yo, Y:) = 0, (Yy, Yz) = 0, (YZ; Yo =0,

v ve ™ 00 _ (6.10) (Yo, Yo) = 1Y, (Y, Vo) = YV, + 3V,
—~Aaz? N
0 0 e 0 (Y, Y3) = \Y,. (6.12)

0 0 0 1 Here ), is given by (6.8) and the reciprocal vectors
For the line element we find, using (1.15) and (2.2), of {(6.1) are

A=adQ2—-)02"—1), A=—-3"QC—5), u;=¢",.

In case (6.4b), we find by a similar procedure that

GO — P —2/@ — DhHe™? @ - DT 0

(0 = D¥/2b — ba*/(B* — DY e be /(" — 1)} 0
0 0 e

0 0 0

« 1
i = : (6.13)

Ll e B o

where b = 2! 5(3 — §%). [One can verify this by substituting into (1.9)]. The line element has the form
ds® = a*{[(}® — 1)/2b)%e " (da") — (@° da° — dz')’e — &7 (dr") — (d2®)*). (6.14)
In case (6.4c), (6.1) is isomorphice to
(Y,, ¥y) =0, (Y,, ;) =0, (YVy, Yy) =0,
(Yo, Y3} = 3Y, — 38'Y,, (6.15)
Yy, Y5) = 38'Y, + 1Yy, (Y, Vi) = NYs,

and the reciprocal vectors of (6.1) are given by

e™"* cos 1f'2° —e "% sin 1p’2° 0 o
| bt et % (cos 872" + B’ sin 1872°) b e TR cos 1872 +sindf®) O 0O 6.16)
T 0 0 e 0 ’ .
0 0 0 1

where 8/ = —[1 4+ 28*(1 — §")(8 — s")]*. The line element has the form
ds® = a *{e *"[cos 18’2z® da® — sin 382" dz']’ — ¢ 7 b7% [(cos 18'2° + B’ sin 18’2°) da’
+ (8 cos 18/z® — sin 18'2°) dz')’ — e (dx”)’ — (d=®)’}- 6.17)

Keeping our notation (6.3) and (6.6) and introducing complex coordinates by 2° = 1(z® + 42'), z' =
(z° — 4z'), we can write (6.17) in the form

ds® = a7 {(€™ d2® + e d2)? — (e d’ 4 vie ™ d2') — e (de?)? — (d2®)?)
= a7 {(1 — 2 ()" + 2(1 —vgrr)e ™" de® d2t + (1 —»,De 7 (d2))* — ¢ (dr®)? — (dz)?),| (6.18)

which shows a formal similarity to (6.11); this is because the types of (6.1) in cases (6.4a) and (6.4c)
coincide in the complex field. [To emphasize these similarities we could use the following solution of
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(1.9) which corresponds to (6.1)
Mo — )\1)—1()\0 e — M e-)‘”s)
. 1| —al — aBE™ — ™)/ V2N — N)

¢ =

Here it is only supposed that N\, # A,, regardless of
reality. We do not use this because the form of the
line element in the case of real N’s would be more
complicated than (6.11). We repeat that the choice
of different “corresponding” solutions of (1.9) means
only the choice of different coordinate systems in our
manifold (see Ref. 2).]
Putting s* = 1/2 in (6.3) and (6.6) we get

g = Ao Az

3 — 1 —_— 5 —
2 = "% MNo= g, -2

vy = =

cafe

y N

and after trivial scale changes, (6.11) yields the line
element

ds¢ = a*{e"*(dx")’ + 2¢7 dx° dx’
— e (dx")’ — (d2®)*}
A =0, A= —%d

(6.19)

This is a type N vacuum solution with negative A
term,” having a five-parametric group as maximal
group.

Putting s* = 1 we get

B=1, N=0, =1, »,=0, » =1/2,
A=ad A= —-d/2,
whereupon (6.11) yields
ds’ = a*{(d2° + ¢ dx')’ — e ¥ (dx')?
— (@) — ()},

which is Godel’s line element.®
Putting §* = 2 we get

(6.20)

.3'=\/§; )\0=Vo=%(1_7:\/§)7
M o=vo= 31 4+iV3), = —1,
A=0 A=0,

and after changing the scale of 2° and 2* (6.11) yields
the line element

ds? a—2 {e—z)\u=(dzo)2 + 6—2)\,z3(dz1)2
— ¢ (d’) — (d2°)’},
10 K. Godel, Rev. Mod. Phys. 21, 447 (1949).

(6.21)
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a3 — o)™ — ™M)/ V20 —N) 0 0
()\0 - xl)_l()\o e—).nzs - )\, e—k,z‘) 0 0
0 e ™ 0
0 0 1

which is Petrov’s vacuum solution of type I''; he
writes it in the form

ds® = a”*{e ' [((d2°)* — (dz')?) cos V/32®
— 2sin V32® dz° dz'] — €' (d2?)* — (dz°)’}.
Thus, when s* is 1 or 2 our solutions reduce to
known forms. When s* = 1/2, we found a new type N
vacuum solution. For all other values of s* we have
new solutions of the field equations with shear and

rotation.
Now consider a line element of the following form

ds’ = df’ + 2p.e°, dz" dt + e®,g..¢, dz* dz’
= (dt + poe”, dz*)’ + € (gas — PaPo)e’, dz” dz”,

a, B, - =1,2,3; uyv, - =123 (622
We require that
Pa = const, o = gaglt), €, =e",(z"). (6.23)

(To give the correct signature, g, — p.ps must be
negative definite.) We require further that the func-
tions e”, satisfy the equations

eal-‘.v - eav‘u = _Cﬁvaea;‘e‘yv (6.24)

and the condition

det (e”,) # 0, (6.25)

which makes them reciproeal vectors of a three-
parametric simply transitive group. Then the time-
like geodesic unit vector u’= 8], having the covariant
components u; = (1, p,e%,), is an invariant vector
of the group (6.24). Suppose that (6.22) is a solution
of the field equations with incoherent matter such
that ' is the velocity vector of the matter; then we
see that the matter is at rest with respect to this
coordinate system, and the hypersurfaces ¢ = const
are homogeneous, allowing the same group as the
local rest frames [being characterized, respectively,
by the last terms in the alternative expressions for
(6.22)].

We now make a remark on solutions with Xy, A,

1 A, Z. Petrov, ‘“Gravitational Field Geometry” in Recent

Development in General Relativity (Pergamon Press, Inc., New
York, 1962). '
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real. In this case (1.9) [corresponding to (6.1)] can
also be satisfied by

V2 ae
a 1 -y S(l — 82) 0
e’; ==10 e 0 —_—
a V2
0 0 e 0
0 0 0 1 J

Note that if & — 1, Ao/s(1 — s*) — 1. This leads to a
line element (after scale changes) of the form

ds' = (At — V2he ™M /s(1 — &%) dy')’?
— @™ dy' + as(l — )Y/ V2 dy)
_ e~2a).v’(dy2)2 . (dya)'&”

which is isometric to (6.11) or (6.14), respectively.
In this coordinate system the world lines of the
matter are the { lines. We note that (6.26) has the
form of (6.22). To see this we substitute into (6.22)
the expressions

Pa = (—V20/s(1 — 5%, 0, 0),

(6.26)

(;(_1_\/%)2 ~10 -—a 8(1\;52) !
Gap = 0 —1 0 )
—a s_(%s_"’_) t O —(a 8(1\;582) t)2 —1
ot 0 0
e, =1 0 —aa gl
0 0 1

which are in fact the reciprocal vectors of a group of
Bianchi type 6* given by the commutator relations

(Yl) Ys) =a\ Yy, (Yz; Ys) = a)\zYz, (Yu Yz) =0
(6.27)

and we get (6.26). Thus the hypersurfaces { = const
are homogeneous, allowing the group (6.27). We will
give the omitted details and further investigations
of the solutions in a later paper.

7. LINE ELEMENT CORRESPONDING TO (4.39)

Consider now (4.39); the commutator relations
are

30 = (F) (52 >
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w30 (&) () x.

(Xa7 -X3) = 0 (a = O) 1; 2)7

Introducing the operators

2 H E
Yo = <Z> Xo: Yl = (1 1—8) Xu

o= (15, r-x,

we see that (7.1) is isomorphic to

(Yo, ¥y) = Y,, (Y1, 1,) = =Y, (Yy, Yo) = 71,
(Y., YY) =0 (@ =0,1, 2). (7.2)

The following solution of (1.9) [corresponding to
(7.1]

Is| <1.  (7.1)

—~e -1 0 0
31 + 9% sinz' 0 [31 + o)) cos 2! 0]
31 — 9% cosz' 0 —[31 — 9)]} sin 2 O’
0 0 0 1

leads, according to.(1.15) and (2.2), to the line
element
ds’ = 247 {(dz")’ + 2¢" dx° dz’

+ 11 + s cos 2z")e*’ (dz°)?

— 1(1 4+ s cos 2z")(dx®)®

— 86" sin 21" d2° d2® — (dz®)*}. (7.3)

This line element has been given previously by the
author’ The equivalence of (7.3) with the line
element (3.33) given on the p. 1018 of Ref. 2 can
be seen by replacing the parameter k by s 4+ 1 and
constructing the metric according to (2.9) of that
paper. Making the following simple transformations

3 %
&)= G

3 ]
(&) - ) -

we get, from (7.3)
ds® = (d5)° + 264" dt dy’
+ 31 + s cos (24)} ™4™ (dy')?
~ 31 + s cos (24)}1)(dy’)
— s sin (24) dy' dy? — (dy®).

(7.4)
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Note that s = 0 gives the Goédel cosmos. In this
coordinate system the ¢ lines are the world lines of
the matter and (7.4) is of the form (6.22). One gets
(7.4) by substituting into (6.22) the expressions

p. = (1,0,0)
i[1+s cos (2A)*] —issin (24)% 0
Gop = | —dssin 24 —3(1+scos 24)) 0
0 0 ~1
e 0 0
e, = 0 10
0 01

which are in fact the reciprocal vectors of a group of
Bianchi type 3* given by the commutator relations

(Y, Ya) = —(4/2)'Y,, (Y, ¥a) = 0,
(Y5, Y)) = 0.

(7.5)

Thus the hypersurfaces { = const are homogeneous,
allowing the group (7.5). This property of (7.4) has
been pointed out by C. Behr (private communica-
tion), who has used it to find (7.4). independently.
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8. LINE ELEMENTS CORRESPONDING TO (4.44)

The eommutator relations corresponding to (4.44)
are

(Xo, X)) = %Ai{zp + [p( — 1)]*}X2;

(X0, X;) = —34%2p — [plp — DI} X,,

(Xo, Xa) =V,

(X, X5) = 34} 2p@ + DI - [0 — D + DI} X,
(X, Xl) = %A*{Q[p(p + I)P +‘ [(p - 1)(17 + 1)]%}X2>
Xy, Xa) = A{—(p — DX, + [pp + DI*X:}. 8.1)

Already from (4.40) it is clear that the sign of p is
critical (recall |p| > 1). In fact, the group (8.1) is
isomorphic to

(Y, YVy,) =Y,;, (Y, Y, =Y,
(Y, Y) =0

if p > 1, and isomorphic to

(Y, Y,) = =Y, (YV,,Yy)) =Y, (Y5, Y,) =7,
(Yo, Y) =0 @=1,2,3) (8.2b)

if p £ —1. This can be demonstrated by making the
linear transformation (5.2), where in case p > 1,
A’, is given by

(=1

(Yay Yl) = Y21
(@a=1,2,3) (8.22)

@ + 1} 0 0 —p — 1)
—_ _ i
A =a 0 2p — [ple — DI’} 0 0 (8.32)
0 0 {2p + [p(p — DI} 0
-p 0 0 [pe + DI
and in case p < —1
[p(p + 1) 0 0 -1
— _ 1t
£o=a O {—2p + [plp — DI} 0 0 (8.3b)
0 0 {—2p — [p(p — 1P} 0
—p 0 0 "[p(P + 1)]*

with a in both cases given by

A"&;, and since the metric is given by g, = €°;1..6%,
we obtain

= [ApB3p + DI 8.4 .
“ [4pGp + 1] ®4) ix = € igabébk: (8.5)
Denoting the reciprocal vectors of (8.1) and (8.2) where
by ¢°; and &; respectively, we have [see (5.4)] €*; = Go» = ASunaAd%. (8.6)
Casep > 1
Carrying out the indicated multiplications we have, in case p > 1, using for 4°, (8.3a), that
p 0 0 lplp + DI
0 —{2p — )k 0
gab — a2 { p [p(p )] } 0 (8.7)
0 0 —{2p + [pl — DT} 0
o + 1P 0 0 ~@p ~ 1)
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It is easy to see that 2a) [ + 1)/p* O 0 0
— . . 1
&, = 0 sin z snz cosz O ’ 8.8)
0 cos 2 sinz' sinz 0
(2a)7" 0 cos z' 1
where
z=24+ 2a)'t (t = 2" (8.9)
are reciprocal vectors of (8.2) (a). Now &°; can be written in the form
éai = Bubkbi, (8.10)
where @a)'[p+ /P 0 0 0
B,(1) = 0 cos t/2a —sin t/2a 0 8.11)
0 sin t/2a  cos t/2a 0
2a)™" 0 0 1
and 1 0 0 0
el a3 s .3
ke, = 0 —sinz sinz cosx” 0 ‘ (8.12)
0 cosz® sin ' sin £* 0
0 0 cosz' 1

Carrying out the multiplications indicated by g,» = B*.k°;g.,B’.k*. we get the line element in the form
of (6.22) with

p. = a(0,0, —(p — 1)), (8.13a)
2p — [plp — Dl cos t/a  [p(p — 1))} sin t/a 0
guslt) = —d’| [ — Di¥sint/a  2p + [pp — 1] cos t/a 0 (8.13b)
0 0 Bp—1)
and | —sin&* sinz' cos2® 0
e, = | cosz’ sinz' sinz® 0], (8.13¢)
0 cos z' 1

which are the reciproeal vectors of the group of Bianchi type 9* with the commutator relations
Y, Y,) =7, (Y, Y,) =Y, (Ys, V) =Y, (8.14)

The world lines of the matter are the ¢ lines, and the hypersurfaces { = const are homogeneous, allowing
the group (8.14). This is a finite rotating universe previously given in Ref. 2. The correspondence between the
parameters here and in Ref. 2 is given by R = 2a(2p)* and k = i[(p — 1)/p]*. At p = 1 we have Einstein’s
static universe [see (9.31)].

Casep < —1
In the case p < —1 [see (8.3b)] g.;, defined by (8.6), has the form
p 0 0 ~pe +
_ —
G = @ 0 2p — [plp — 1] 0 0 . 8.15)
0 0 2p + [pl — 1} 0

~p + D} 0 0 —-Bp—1
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A solution of (1.9), corresponding to the group (8.2b),
is given by

1 a7 + 1)/p) 0 0

7, = 0 0 cos '/2a ¢ sin z'/2a .
0 0 —sin z'/2a ¢~ cos z'/2a
0 —(2a)™? 0 —
(8.16)
Using (8.5), (8.15), and (8.16) and the notation
t=2a, ¥y =2, ¥y =2, ¢ =4

we get the line element in the form
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— a*{—pdy")’ — 2p( + V)" ay' dy’

+ (=2p + [pl — DI cos t/2a)(dy’)°

X 2[plp — D% dy* dy

+ ' ((p — 1) — [pl@ — ]! cos t/2a)(dy’)"}, (8.17)
where @ is given by (8.4). This is & new metric.
[If p = —1, (8.17) goes over into (7.4) with the
special value s = 1/2%.] The world lines of the matter
are the t-lines, and the motion of the matter in this
space has shear and rotation. One sees immediately

that (8.17) is of the form (6.22) with the following
values of p., g.s, and €%,

ds" = dt* + 2a{lp(p + D)} dy' — (p — V)" dy*} dt p. = a(lplp + I}, 0, —(@ — 1)),  (8.18a)
-p 0 ~[p® + 1
Jos = —0° 0 —2p + p(p — 1) cos t/a [p(p — 1)]*sin t/a (8.18b)
—pe+ D - DPsint/a  (p—1) — [pp — D] cos t/a
and ing shear and vanishing expansion (see Ref. 12), but
geodesic motion with vanishing shear and vanishing
1 0 0 expansion leads to the equation
e, =101 0 (8.18¢) UG =0, 9.1)
0 0 ¢

e”, are the reciprocal vectors of a group of Bianchi
type 3* given by the commutator relations

(Y2; Ya) = Ys; (Ya, Yl) = 07 (Yly Y2) = 0 (819)

In (8.17) therefore the ¢ lines are the world lines of
the matter and the hypersurfaces ¢ = const are
homogeneous, allowing the group (8.19).

9. PROOF OF GODEL'S THEOREM

Godel writes in Ref. 10: “I am mentioning without
proof that, disregarding the connectivity in the
large (which can be changed by identifying the
points of certain point sets with each other), the
solution given (Gédel’s cosmos) and Einstein’s static
universe are the only spatially homogeneous cosmo-
logical solutions with nonvanishing density of matter
and equidistant world lines of matter.”

The conditions of the above theorem imply homo-
geneous space—time. We can see this by the following
consideration: ‘‘cosmological solution’” means a
solution of (1.36). One sees from the twice contracted
Bianchi identities that the world lines of the matter
are geodesic. “Equidistant world lines’’ mean vanish-

where u' is the tangent vector to the world line.
Equation (9.1) is the Killing equation, whence v’ is
the infinitesimal generator of a one-parametric group,
which leaves the metric invariant. By virtue of the
assumption of spatial homogeneity we already have a
three-parametric group Gs. Since u’ is necessarily
an invariant vector of this G; (this follows from the
field equations), u’ has vanishing commutators with
the infinitesimal generators of (3. That means that
we have a four parametric group leaving the metric
of the space-time invariant, i.e., we have homo-
geneous space-time. Nonvanishing density implies

4 > 0. 9.2)

After these preliminaries it is evident that in
order to prove Gdodel’s theorem we have only to
show that under the assumption [see (2.52)]

9.3)

oagarn = 0,

which corresponds to (9.1), our equations (3.18) and
(3.25) have precisely the two solutions mentioned by
Goédel.

‘We make a preliminary remark: If a normal hyper-
bolic Riemannian space R, with the signature —2

12 J. Ehlers, Akad. Wiss. Mainz. Abh, Math. Natl. Kl.
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contains a line congruence with the properties
u;u’ = 1 and u(,, = 0, and satisfies the vacuum
field equations R;, = 0 [i.e., (1.36) with A = 0 and
A = 0], then the space—time is flat. This can easily
be seen by using, for example, the equations (2.3.2),
(2.3.3) in Ref. 13 p. 56.

We now proceed to set up the equations corres-
ponding to the condition (9.3).

Case (1): Egs. (3.18). We have seen in Seec. 4 that
the equations (3.18) reduce to the equations (4.7).
According to (4.15) the condition (9.3) gives the
single equation

T = 0. 9.4)

Using (6.4) and « = & # 0 [see (3.15a) and (4.2)),
we get from (4.7) the following equations

ISTVAN OZSVATH

A = 6d" — 17, (9.5¢)
A= =12 + 7). 9.51)

Inserting (9.5¢) into (9.5b) we have (r — 2v)° = 247,
which can only be satisfied if v = 0, since r and «
are real. It follows further that

o=1, 2 =1, A=2" A= —1A. (9.6)
Collecting our results we have
ce
AABCC,: AB 11’ 12/ 21 22/
11 2 r r 0
(12) 0 o a 0 . (97)
22 0 r r 2a

The nonvanishing components of the corresponding
structure constant tensor are given by

= —v, 9.5a —
‘ Y . ( ) 0310 = 2\/50[, C311 = —\/21‘. (98)
— 2y) = 247, 9.5b )
olr " * (9.5b) We see later that this leads to the Godel cosmos.
o=r= 2 (9.5¢) Case (i1): Eqgs. (3.25). The components of ¢4p4-5-
6 = 2o°, (9.5d) [see (2.52)] are given by
A'B’
casan:  AB 1y (172') 22
1 (v + /22 [k —(2a + B))/4V2 (¢ = N)/2/2 _
(12) [k — (2« + B/4VZ  —(v + 7)/2v2 = (& +28)/4v2 9.9)
22 (8 — \)/2+/2 —[v — (e +2801/4v2 (v + 7)/2+2
Condition (9.3) combined with (3.22) gives 28Ba — B) — o(p+ p — 4¢) = 0, (9.13f)
ptp=ete=vy+yv=p+ag=0, v(Ba — B) — ela — 38) = 0, (9.13g)
A=poy=at 2 w=8t6 010 64 p) + sl — 26 + e — )
With the help of (3.21) we can arrange that —la— B 4o =0, 9.13h)
a+a=0, 9.11) X .
and also that oo — pa + 3Q2a — B)(y + ¢ =0,  (9.139)
8+ B =0. (9.12) o + uB + 3 — 200y + ¢ =0,  (9.13))

This can be seen by the following reasoning: Egs.
(9.10), (9.11), (3.25a) and the condition that 4 has
to be real, imply (8 + B) = 0. If a« # 0, (9.12)
follows; if & = 0, we can use (3.21) to make 8 imagi-
nary. Using these equations we get from (3.25) the
following system:

—2a— B)2x—pB) — o6 — p* = A, (9.13a)
—2(a — B)a — 28) — o5 — ¥ = A, (9.13b)
o5 — pu — 2(eu + vp) + 408 = A, (9.13¢)
—3(e — B 4+ 06 — puw) = A,  (9.13d)

2a(a — 38) — olp+ u — 4y) = 0,  (9.13¢)

13 P Jordan, J. Ehlers, and W. Kundt, Akad. Wiss. Mainz,
Abh. Math. Nat. KL

where (9.13g) and (9.13h) are the sum and the dif-
ference of (3.25f) and (3.25g). We now must find
all its solutions. In order to do that we have to
distinguish four different cases,

1) a8 # 0; @) a®0,8=0;
B a=0,8#0;, Wa=8=0

which we discuss separately.
Case (1): From (9.13i) and (9.13]) we get

p=0c+ Q2072 — B)y + 9,
p=—c— 2007 — 280 + 9.
Inserting into (9.13h) we obtain
@=B'tr +o =0



SOLUTIONS OF EINSTEIN'’S

which can be considered together with (9.13g) as a
system of linear equations for the quantities y and ¢,
having the determinant

d = 4(a — B)".

Ifd # 0 it follows thaty = e = 0,p = g, u = —0
and from (9.13e) and (9.13f) we obtain

a—3=0, 3«—8=0,

whence @ = 8 = 0, which contradicts d = 0. If
d =0, a = B, and, from (9.13g), v + ¢ = 0 whence

p = —u = o. Substituting into (9.13) we get
A=0, A=0,

o’ — oy =0,

which means that the space—time is flat, according
to our earlier remark.
Case (2): From (9.13g) and (9.13]) we get

e=0,
and from (9.13i) and (9.13h)

v =0,
p=og, p= —oa.

Then (9.13¢) would require « = 0, which is a con-
tradiction.
Case (3): From (9.13g) and (9.13i) we get

e=0
and from (9.13j) and (9.13h)

v =0,

p=o0, p=—o.

Then (9.13f) would require 8 = 0, which is a con-
tradiction. We are therefore left with only one
possibility:

Case (4):

a=0, =0 9.14)
Equations (9.13) now read

—g5 — p = A, (9.15a)
—~g¢ — = A, (9.15b)
06 — pu — 2(en + vp) = A,  (9.15¢)
—3(06 — pu) = A, (9.15d)
olp+p—4y) =0, (9.15¢)
olp+ u—4e) = 0. (9.151)

They imply
o = 0. (9.16)

This can be seen by the following reasoning: If
o # 0 we have, from (9.15),
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Yy=e=1p+un), A= —§oi— o),
A=0i—pu—3p+u A=

(p+w)p—m =0.

- 2
00 — p,

Therefore

Bp=porpu=

If u = p we have
v =¢€=1p,
A= —a5—p’, A=0c3—3p, = —L(ed — p°).

This would require 0 = p which is only possible if
e = 0and p = 0since 66 > 0 and p* < 0. But then
the space—time is flat. If u = —p we have

vy=e=0,
A=—(i+p), A=ci+p", A=—}0s+0)

but then ¢¢ 4+ o® = 0 and the space-time is flat.
Using (9.16) we get from (9.15) the equations

A4 = _Pz; A= _I‘-zx

9.17)
A= —pp— 2en+1vp), A= 3}pu,
and we have the possibilities
#=p)7+5=OyA=_92)A=—%A1 (918)
p=—-p,'y—e=0,A=—-p2,A=%A. 9.19)
Collecting our results we have, in the case (9.18),
ce’
Agpoc’s  AB l 1 12 21 22
11 0 0 i 0
(12) —ig 0 0 ig (9.20)
22 0 i 0 0
(y =145 p=1)

and the corresponding nonvanishing structure con-
stants are

0120 = \/51', Czol = -—1’/\/5, 0012 = —7‘/‘\/—2—,
0231 = - '\/Eg, 0312 = - '\/Eg. (9.21)
In the case (9.19) we have
ce’

Auscc’:  AB ' 1 12 21 22

11 0 0 ir 0

(12) | ig—r) O 0 ig (9.22)

22 0 —1r 0 0

with the corresponding nonvanishing structure con-
stants

0231 = — 2r, 0312 = - 2T’ 0123 = —’\/57‘,
Ca' = V2(g = ¥r), 2o’ = —V2(g — ¥). (9.23)



610

To conclude the proof of Godel’s theorem we give
the line elements corresponding to (9.8), (9.21),

ISTVAN OZSVATH

and (9.23). One sees by substituting into (1.9) that
the following are possible sets of reciprocal vectors:

—V2TT =T V2 0 0
o = 0 - /22 a 0 0 ©.24)
0 0 —rVv?2)™ 0
0 0 0 —(rV2)™
where
2a° = 1%
and
r 0 e /r 0
¢ = 0 —cosr/r —€ sinr/rv?2 0 ’ 9.25)
0 sinr/r —e€ cost/rV2 0
0 0 0 — ()™
where _
T =@ — Q¢/N")/VZ; (9.26)
and
1 0 0 0
. ey . 1 ~
¢, = 0 sin w/r \/E sin z' cos w/r V2 0 , 9.27)
0 —cosw/rVvV'2 —sinz' sin w/r\/Q_ 0
0 0 —cos z'/rV2 —V?2)"
where y* = cos 3z’ sin 3(z* + z°) = sin x sin ¢ sin 4,
0= V2g — I’ + 2. (9.28) 4* = sin 3z’ cos Lz® — 2°) = sin x cos 6,
Using g;x = €;na¢’;, the corresponding line elements y* = sin iz’ sin 3@ ~ 2*) = cos x. 9.32)

have the form

ds® = (2°) " {(dz° + ¢ d2')
— 37 (d2))’ — (d2®) — d=°)),  (9.29)
ds® = r*{(d2® + € di®)’?
— 17 (d2?)? — (dx')’ — (dz®)}, (9.30)
ds’ = (d2")" — )7 {(dz")* + (d")" + (d2)*
+ 2 cos 2’ dz® dx’}, 9.31)

(9.29) and (9.30) are obviously the Godel cosmos,
(9.31) is the Einstein static universe; to see this we
calculate the expression

@) + @) + @y’ + @y

with both of the following alternative expressions
for the y’s:

y' = cos 32" cos 1(a® + 2°) = sin x cos ¢ sin 4,

[The formulas (9.32) have been computed by E. L.
Schiicking.] On one hand we get (9.31), and on the
other hand

ds® = (dz®) — 27 {dx® + sin® x(d&® -+ sin® 8 d¢”))
(9.33)

which is the usual form of Einstein’s static universe.
This completes the proof of Godel’s theorem.
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The theory of the scattering of particles by a potential field V(z) according to the classical wave
mechanics of Schrédinger is considered. Various conditions on V(z) are known which imply that the
wave packets ¢(z, t) describing scattered particles are asymptotically equal in L:(RE") to wave packets
vo(z, t) for free particles when ¢ — o or — «. In this paper, additional conditions on V(z) and the
initial values of the wave packets are given which imply that ¢ (z, t) and ¢z, t) have square-integrable
(or continuous) partial derivatives of a prescribed order whose difference tends to zero in Ly(R") (or

uniformly in R*) when { —» « or — =,

1. INTRODUCTION

HIS paper deals with the theory of the scatter-

ing of particles (elementary particles, atoms, or
molecules) by a potential field V(z) according to
the classical wave mechanics of Schrédinger. In the
theory, the state of a particle at time ¢ is described
by a wave packet ¥(x, ) which is a complex-valued
function of the point z € R" (n-dimensional Eue-
lidean space). The wave packets are solutions of an
initial-value problem for Schrédinger’s wave equation
which may be written (after an appropriate choice
of units)

10Y/ot = —AY + V@)Y, 2ER", —o <1< o,
and
\l’(x, 0) = Kb(x), x E R".

Here A is the Laplace operator on R" and V(z) is the
potential function. In particular, the wave packets
¥o(z, t) for free particles are solutions of

1 9Ye/dt = — Ay,

and

z € R", —o << o,

Yoz, 0) = ¥ol2), z E R

This problem can be solved explicitly in various
ways, so that the wave packets for free particles may
be regarded as known.

Physical intuition suggests that when { — o« or
— o the wave packet ¥(z, t) for a scattered particle
converges asymptotically to a wave packet ¢,o(z, ¢)
for a free particle. This behavior has been verified
for various classes of potentials V(z) by Cook,

* Work performed under the auspices of the U. S. Atomic

Energy Commission.
1J. M. Cook, J. Math. and Phys. 36, 82 (1957).

Hack,® Kuroda,® Stankevich,* Brownell,® and others.
In all of this work, the convergence is in the mean-
square sense, i.e.,

f [¢(x, ) — Yolz, t)|* dr—0 when t— o or —o.
R"

The purpose of this paper is to present additional
conditions on V(xr) and the initial values which
guarantee that ¢(z, t) and yo(x, t) have square-
integrable (or continuous) partial derivatives of a
prescribed order whose difference tends to zero in the
mean-square sense (or uniformly in R") when { —» «
or — «. The results are described below, following a
more precise formulation of the problem.

The quantum-mechanical scattering problem can
be given the following abstract formulation.® The
wave packets describing both the free and the scat-
tered particles are represented by vectors ¢ in a
separable Hilbert space 3C over the complex number
field (the state space). The free and scattered parti-
cles are characterized by their Hamiltonian energy
operators, denoted by H, and H, respectively, which
are self-adjoint linear operators on 3¢. H, and H have
spectral resolutions’

o, = f_ NdE,(\) and H = f N dEQY),

and the time dependences of the wave packets repre-
senting free and scattered particles are given by the
corresponding unitary operators

| e B0 and e = [ & B,

2 M. N. Hack, Nuovo Cimento 9, 731 (1958).

3 8. T. Kuroda, Nuovo Cimento 12, 431 (1959).

‘1. V. Stankevich, Dokl. Akad. Nauk SSSR 144, 279
(1962) [English transl.: Soviet Phys.—Doklady 3, 719 (1962)].

¢ F. H. Brownell, Pacific J. Math. 12, 47 (1962).

¢ J. M. Jauch, Helv. Phys. Acta 31, 127 (1958).

" F. Riesz and B. 8z.-Nagy, Functional Analysis (F. Ungar
Publishing Company, New York, 1955), Chap. 8.
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Thus
o)) = e "y and Y() =y (1.1)

describe the evolution in time of the wave packets
for a free particle with initial state ¥, and a scattered
particle with initial state ¢, respectively. The wave
packets for the free and scattered particles are said
to be asymptotically equal in 3¢ for { — o, written

Yo(f) ~ ¥(b), (1.2)

!> o,

lim [[¥o(t) ~ ¥(Ol[x = 0.
If ¢ is an eigenvector for H, so HYy = M, then
) = ey =y, 1.3)

Thus ¥(t) describes a stationary, or bound, state and
cannot be expected to tend asymptotically to a
free-particle wave packet. More generally, if ¢ is
not orthogonal to every eigenvector for H, then
Y(f) will have a component which behaves like
(1.3) and the asymptotic behavior (1.2) cannot be
expected. Hence, it is natural to restrict the initial
state ¢ to a class 9 of “‘scattered” or “unbound”
states. 9 is defined here, following Kuroda,® as
the set

m = {Y : (EQ\), ¢) is absolutely continuous on
—o <A< o},

Obviously, 91 contains no eigenvectors for H, since
(EQO)Y, ¥) has a discontinuity when ¢ is an eigen-
vector of H.

Kuroda® has proved that (i) 91 is a closed linear
subspace of 3¢, and (ii) the direct sum decomposition
3¢ = M P " reduces H; i.e., M and " are mapped
into themselves by H (and therefore by e **¥). It
follows that ¢(tf) = e ***y is always orthogonal to
the bound states if ¢ & M.

In what follows the projection of 3¢ onto 91 is
denoted by P. The corresponding subspace and
projection for the operator H, are denoted by 91,
and P,. The wave packets ¢(f) and ¢,(t) are restricted
to the subspaces 9 and 91T, respectively, by requir-
ing their initial values to have the form y = Pg¢

and ¢, = Po¢o_~
Operator ¢~ is a unitary operator on 3, with
inverse ¢'*”. Hence
||e—i1H¢ _ e_ilHn¢0[IJc — ”'p - eitH e—it}!o‘pOHx
for all ¢, ¢ & 3C.

It follows that ¥ () ~ ¢,(t) when { — =, with ¢, =
Poo, if and only if

QUANTUM THEORY OF SCATTERING

lim e**¥ e‘“H°P0¢0 exists in 3¢,
t—wo
If this limit exists for each ¢, € 3¢ it defines an
operator
W. = W.(H, Hy) = s—lim " ¢~**"P,

t—oo

(1.4)

on 3 (s — lim stands for “‘strong limit’’). Similarly,
Y(t) ~ ¢o(t) when t — — o, with ¥, = Py, if and
only if

lim e'*¥ ¢ **"°Pyp, exists in 3C.

t—r—c0
The corresponding operator is

W_ = W_(H, H,) = s—lime"? e *"P,,

-

(1.5)

W, and W_ are called the Mgller wave operators for
the scattering problem.®

Equations (1.4) and (1.5) may be written more
concisely as

W. = W.(H, Hy) = s-lim e**" ¢7**°P,.

t—tco

(1.6)

- Henceforth this notation is used to discuss the

cases { —» + » and { — — o simultaneously.

Kuroda® has shown that the wave operators W,
have a number of properties that follow directly
from the definition (1.6). Two of these properties
which are needed below are quoted here as

Theorem 1.1 (Kuroda). Let the wave operators
W. = W.(H, H,) exist. Then W, is a partial isom-
etry® with initial set 97, and final set contained in
W; ie.,

W*W, =P, and W, 3 C IN. (1.7)

The wave operators satisfy the operator equations
HW, = W.H,P,. (1.8)

It was shown above that ¥o(t) = e Py, ~
Y(t) = e """y when t — = for each ¢, € 3 if
and only if the wave operators W, exist and ¢ =
W .$o. The existence of W, is dependent on the
structure of the operators Hoand V = H — H,. In
the classical case, where 3¢ = L,(R"), H, is (a self-
adjoint extension of) the Laplacian on R* and V is
the operator corresponding to multiplication by a
potential function V(z), sufficient conditions for
the existence of W.(H, H,) have been given by
several authors. In 1957, Cook' obtained the suf-
ficient conditions n = 3, V(z) &€ L,(R®). Subse-

8 T.Y. Wu and T. Ohmura, Quantum Theory of Scatfering,
(Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1962),
Chap. 4.
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quently, Hack® obtained the sufficient conditions
n = 3, V square-integrable on bounded sets and
V(z) = 0(|z|™") with 4 > 1. Kuroda® obtained
V()1 + |z))~™***** € L,(R"), and further general-
izations were given by Stankevich,* Brownell,® and
others. These conditions are sufficient to guarantee
that Y(zx, t) — Yo(z, t) — 0 in L,(R™). In this paper,
the wave operators W, are assumed to exist and
additional conditions on V{(zx) and y.(z) are pre-
sented which guarantee that ¢, (z, {) and ¢(z, t) have
square-integrable (or continuous) derivatives up to
a prescribed order whose differences tend to zero in
L,(R") (or uniformly in R") when { — = . The
remainder of this introduction contains a description
of the principal results obtained in the paper, to-
gether with an outline of the methods that are used
to obtain them.

The abstract scattering problem formulated above
is considered in Sec. 2. It is shown that if ¢ € D(H™),
the domain of definition of the mth power of H,
then y(f) = e ***y € D(H™) for every t and, more-
over, ¥(f) has time derivatives D*(f) (with values
in 3¢) of orders k = 0, 1, --- , m. This result is used
to show that if ¢ & D(H7) and W, exist then
W.po €& D(H™), so that ¢,(f) = e " Py, and
¥.(0) = e ""W.p, have time derivatives D'y, (t)
and Diy,.(t) for k = 0, 1, --- , m, and these are
asymptotically equal in 3¢ for t —» + =} ie,,

Diy.(t) ~ Dio(t)

t—->*» and k=0,1, -, m.

In Secs. 3, 4, and 5, 3¢ = L,(R"), H, = — A where
A is a self-adjoint extension of the Laplace operator
for R*, and V = H — H, is the operator correspond-
ing to multiplication by a scalar potential V(z).
Section 3 contains a discussion of the operators
H’; and H™. The principal results are the “coercive-
ness inequalities” which imply that functions y¥(z)
in D(H?) or D(H™) necessarily have derivatives of
order 2m in L,(R").

The following notation is used in discussing partial
derivatives of higher order:

for

Di=a/axiy j=1)27"'7n;

(a1, a2, **+ , a,), where each «; is a non-
negative integer;

D; = D"D;* --- D;";
le| =y + a2 + -+ 4+ @, = order of D3.

If Y(x) € L,(R") then D%y(z) is said to exist in
L;(R™) and equal 6,(x) € L,(R") if

x =

613

[ v@ D@ az = (=)' [ 0.0) do

for all ““test functions” ¢(z) which have continuous
derivatives of all orders and vanish outside a bounded
set. The set

3B = {y : DY € Ly(R") for || < m}

is a Hilbert space with respect to the norm

([ = ipvwra).

Functions ¢y € D(H’;) necessarily have square-
integrable derivatives Dy of order || < 2m; ie.,
D(H?P) C L2~(R"). This is a consequence of an
inequality of the following form.

1192 < c(||HS9|[2 4 [|¢]]2) for ¢ € DEH?). (1.9)

A systematic study of such inequalities was
initiated by Aronszajn.’ In his terminology the
integro-differential form on the right-hand side of
(1.9) is “coercive” if (1.9) holds. (If the form has a
finite value then all the derivatives appearing in it
are “forced” to have a finite norm.) In this paper
(1.9) is called the “coerciveness inequality” for the
operator H7. Coerciveness inequalities have been
proved for a variety of differential operators,
boundary conditions and domains; see Agmon,*
Schechter,'* and de Figueiredo."

In Sec. 3 a simple proof of (1.9), based on the
Fourier transform, is given. The principal result of
Sec. 3 is the corresponding inequality for H™ =
(Ho + V)™

In Sec. 4 the results of Secs. 2 and 3 are combined
to find conditions on V(z) and ¢,(z) which imply
that ¢,(z, t) and y¥(z, ¢) have space—time derivatives
of a prescribed order which are asymptotically equal
in L,(R"). In particular, it is shown that if W, exist,
Yo € D(H") and the derivatives D2V (z) are con-
tinuous and bounded for |a] < 2m — 2 then the
derivatives D}D%W,(z, t) and DiD2y,(z, t) exist in
Ly(R™) for k + || < m and

D’:D:\bi(x) t) ~ DI:D‘;Ubo(x) t)
{-—> 4+

1]l =

for and k + |a| < m.

A well-known version of Sobolev’s imbedding

¢ N. Aronszajn, On Coercive Integro-Differential Quadratic
Forms, Conf. on Partial Differential Equations, Univ. of
Kansas Rept. No. 14 (1954), 94-106.

10 S, Agmon, J. Anal. Math. 6, 183 (1958).

u M. Schechter, Comm. Pure Appl. Math. 11, 153 (1958).
(19231)). G. de Figueiredo, Comm. Pure Appl. Math. 16, 63



614

theorem'® states that if ¢ € L%(R™ and m > [n/2] +
kE 4+ 1, then ¢ has bounded continuous derivatives
of orders < k in R". In Sec. 5 this theorem and the
results of Sec. 4 are combined to obtain conditions
which imply that ¢.(z, t) and . (z, t) have continuous
partial derivatives of a prescribed order whose dif-
ference tends to zero uniformly in R" when t — 4+ .

2. ASYMPTOTIC ESTIMATES FOR TIME
DERIVATIVES

This section is concerned with the abstract scat-
tering problem formulated in Sec. 1. It was shown
there that if the wave operators W, = W.(H, H,)
exist then the wave packets ¢.(t) = ¢ ***W.¢, and
Yo(t) = e **T°Pyp,, corresponding to scattered parti-
cles and free particles, respectively, are asymp-
totically equal in 3C for { — = «. The purpose of
this section is to derive additional conditions which
imply that the time derivatives D, (f) and D, (1)
(exist and) are asymptotically equal in 3¢ for
l— oo,

The calculus of functions with values in a Hilbert
space JC is used in what follows. A function y(t) with
values in 5C has a derivative Dy (r) € 0 at t = 7
if and only if

R (r + k) — ¢(r)] = D,¢(s) in 3¢ when kh — 0.

Similarly, ¥(t) is continuous at ¢ = 7 if and only if
¥(t) — ¥(7) in 3¢ when ¢ — 7. The class of functions
on — o < { < » with values in 3¢ which are con-
tinuous together with their derivatives of orders
k=1,2 ---,mis denoted by C"(— =, «;3¢). The
usual rules of calculus hold for functions in this
class.™

After these preliminaries, the main result of this
section may be stated as follows.

Theorem 2.1. Let m be a positive integer, let
oo & D(HT), and assume that the wave operators
W. = W.(H, H,) exist. Then

Yo() and ¢.() arein C"(—«, »;3), (2.1)

Yo() € D(HY) and ¢.()) € DH™) for —w <t < o,
(2.2)

Df‘ﬁo(t) = (“iHo)k‘l’o(t) = e_”H“Po(“iHo)kft‘o, (2-3)

Diy.(t) = (—iH)'¢.(0) = e "*"(—iH)'W .¢o
for £k=0,1,---,m,

B8, L. Sobolev, Applications of Functional Analysis in
Mathematical Physics, Translations of Mathematical Mono-
graphs (American Mathematical Society, Providence, Rhode
Island, 1963), Vol. 7.

1 E, Hille, and R. S. Phillips, Functional Analysis and
Semi-Groups, Colloquium Publications (American Mathe-
matical Society, Providence, Rhode Island, 1957), Vol. 31.
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and

lim {|Digo(t) — Dido(®)|l = 0

for k=0,1,---,m. (2.4)

The proof of Theorem 2.1 is based on the following
two lemmas.

Lemma 2.1. If W, = W (H, H,) exist then
H'W,. = W.HGP, m=1,2,3,---. (2.5)

Proof. For m = 1 this result is contained in
Kuroda’s theorem (Theorem 1.1). The general case
follows easily by induction on m.

for

Lemma 2.2. Let H be an arbitrary self-adjoint
operator on 3¢, and let ¢ € D(H™). Then ¢(t) =
e’y € D(H™) for — o < t < . Moreover,

Y(H) EC™(— =, »;3) and Diy(t) = (—iH)'y(t)
for k=1,2,-:--,m.

Proof. The following facts are used.” If f(\) is a
complex-valued function, defined for — o <A < @
and E()) is the resolution of the identity correspond-
ing to H, then f(H) is the operator with domain

pgay = {v : [ YOO d [E0IF < =}
defined by
i) = [ 109 aB Q.
Moreover,
liEulr = [ o d BN

for ¢ € D(f(H)). 2.3)

In particular,

Y € D(H™) if and only if fw N EQW|] < =.
- @.4)
Now
EN¥() = EN ey = e""E()y
because E(\) eommutes with functions of H. Hence

HEQ O = [IEMYI]| (2.5)

since e~ **¥ is unitary. Equations (2.4) and (2.5) imply
that ¥(t) € D(H™) if and only if y € D(H™.

Next, notice that if ¢ € D(H™) then (—itH)*()
satisfies
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(=i (¢ + =) — (—iH)* ()]
— /:qn Ie—-ir)\ . llz )\21: d HEOO’#Hz

fork=0,1, -+, mby (2.3). The integrand in (2.6)
tends to zero when r — 0 and is bounded by a con-
stant multiple of A* which is integrable with respect
to d ||[EQ)Y|)? for k = 0, 1, --- , m. Hence, (2.6)
tends to zero with =, by Lebesgue’s dominated con-
vergence theorem, and it follows that

(—sH'Y(t) EC(~ », w;5) for k=0,1, .-

The proof of Lemma 2.2 is completed by showing
that D% (¢) exists and equals the continuous function
(—iH)"y(t) fork = 1,2, - -+, m. For the case k = 1,
(2.3) implies .

Hlg(t + 7 — /7 — (—iH)®)|]

_ '/qaa e—i‘r)\
—®

-1 .
Tt
Moreover, the integrand of this integral is bounded
by a constant multiple of \*, and tends to zero when
7 — 0. Hence if ¢ € D(H) then D(f) exists and
equals (—<H)Y(t), by Lebesgue’s theorem. This
completes the proof for the case m = 1. The general
case follows easily by induction on m.

Proof of Theorem 2.1. If ¢, & D(H7) then ¢, =
W.po € D(H™), by Lemma 2.1. Hence, Lemma 2.2
implies that both ¥, (¢) and ¢ . (t) arein C™(— «, «;3)
which proves (2.1). Moreover, Lemma 2.2 implies
vo(t) € D(H?), ¥.() € D(H™) and

D’f%(t) = (_?:Ho)k e—‘moPo'ii’o = 3_“HGPO(_1‘H0)’C¢0;

2.6)

, m.

N |EOYIP.

and
’:*(t) = (—'iH)k e—ilHW*qso —_ e—“H(""iH)kWid)o,

fork = 0,1, .-+, m which proves (2.2) and (2.3).
But H*W, = W_H:P,fork = 1, --- , m by Lemma
2.1. Thus fork = 0,1, --- ,m

Df'l/o(t) = e_”H"Pod’k and D’:¢i(t) = e_“HWr¢¢k; 2.7
where ¢, = (—iH,)"¢,. Hence

[IDy.(t) — Divho(t)] |

= HWthk - e”H e_”HOP0¢kHac —0 when {t— 4+ o

fork = 0,1, -+, m because of the assumption that
W . exists. This completes the proof of Theorem 2.1.

3. COERCIVENESS ESTIMATES FOR THE
OPERATORS H,~ AND H~

The remainder of this paper deals with the classi-
cal problem of the scattering of nonrelativistic
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particles by a potential. Thus 3¢ = L,(R"), H, is
(a self-adjoint extension of) the operator —A =
~D?— ... — D}and H — H, = V is the operator
corresponding to multiplication by a real-valued
potential function V(x).

In this section, the operators H, and H are defined
and a number of their properties are derived. The
main result is the coerciveness inequality for H™,
Theorem 3.2.

The free particle Hamiltonian H, is discussed by
means of the Plancherel theory of the Fourier trans-
form. The relevant facts concerning the transform
are summarized here without proofs."*

The Fourier transform establishes a unitary map-
ping ¢ — ¢* of L,(R") onto itself defined by

Vo) = lim e [ @)

R—ow

V@) = lim i [ ey ap,

R

where p € R", {p, 2) = p1x, + --- + Dz, and the
limits exist in the L,(R") sense (mean-square con-
vergence). The unitary property of the transform
is expressed by

Parseval’s Theorem.
/,;,. ()P dx = /;” |¥*(p)|°dp forevery ¢ & L,(R™).

If ¥ and Dy are in L,(R") it can be shown that ¢*
and p¥*(p) are in Ly(R") and [D(p)]* = ip¥(p).
This is a special case of

Lemma 8.1. Let P(D) = D a1<m €aD* be a dif-
ferential operator with constant coefficients, and
let ¢ & L,(R"). Then P(D)¢ & L,(R") if and only if
PEp)*(p) = 21 a15m Cat' *'p"¥*(p) € Ly(R"), where
p“=pi*- - -p.". Moreover, [P(D)¢(p)]*=P(ip)¢*(p)
if either P(D)y or P(ip)y¥*(p) is in L,(R").

This result is easy to verify by means of Parseval’s
theorem. The proof is omitted.
Lemma, 3.1 implies that

AR = {¥ :p"¥*(p) € La(R") for o] < m}.

Moreover, by Parseval’s theorem,
Wi = [ = D@l de

= fm |£m o l¥*@)|*dp.  (3.1)

% For an exposition of the Plancherel theory see, for
example, S. Bochner and K. Chandrasekharan, Fourier Trans-
forms, Annals of Mathematical Studies (Princeton University
Press, Princeton, New Jersey, 1949), No. 19.
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Now, the free-particle Hamiltonian is formally
—A = —D— ... — D Thusif ¢y € L,(R") then
Ay € L,(R") if and only if
y* and (p] + --- + py*(p) € L(RY),

which is obviously equivalent to p“y¢*(p) & L,(R")
for |a| < 2. This motivates the

Definition. H, is the operator with domain D(H,) =
LI(R") defined by Hyy = —D¥ — --- — Dy

Lemma 8.2. The operator H, is a self-adjoint
operator on L,(R"), i.e., HX¥ = H,.

Proof. The conclusion H, C H¥ is immediate be-
cause H, is symmetric.'"® To prove H, D H% let

¢ € D(H*); e,
Hot, $)racem = (¥, Or.rem 6 € Ly(R")

¥ € DH,).

for some
and all

Then Parseval’s theorem gives

[ o+ +veros= [ roro),
v e L),

for all

whence
*() = (p1 + -+ + pd*®) € L(R").

It follows that ¢ & Li(R") = D(H,) and 8 = H¢,
which completes the proof.

The spectral family of the operator H, may be
described, by means of the Fourier transform, by
the formula

1 1(z.D) 1 %,
o [T dn, >0,
Es(N)¥(z) = { (2m) fng
: 0 , A<0.
(3.2)

The correctness of this formula can be verified by
direct computation. Notice that, by Parseval’s
theorem,

GO, 9 = [ ol dp

Ipl?s

is an absolutely continuous function of A for each
v € Ly(R"). Hence 9, = L,(R") and P, = I, the
identity operator.

The spectral family may be used to define func-
tions of the operator H,. Thus if f(\) is defined for
real A > 0 then direct computation using (3.2)
gives

16 For an explanation of this notation see Riesz and Nagy,
Footnote 7, Chap. 8.
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1 = [ 10) dE¥GE)

= (T—,:)WE /;" ei(z'p)f(|p]2)¢*(p) dp

and

AW = [ O d [1Ew

= [ 1D v .

The domain of f(H,) is precisely the set of ¢ for
which the last integral is finite. In particular, the
operator H7 has domain D(H7) = {¢ : ¢y*(p) and
[p|""¢*(p) are in L,(R")}. Now |p;| < |p|, whence
lp*| = Ip* -+ p| < [pl'®'. It follows that
¥ € D(H?) if and only if p*y*(p) & L.(R") for
lel < 2m; ie., DH}) = L3"(R"). Moreover, the
elementary inequality |p[*'*' < |p|*™ + 1 which is
valid for all p and |« < 2m implies

Wl = [ 3 7 @ dp

<c [ (l™+ 1) Wl dp
= IS + 1191,

where ¢ is a constant which depends on m and n
only. This completes the proof of

Lemma 3.8. For each integer m > 1, D(H%G) =
Li™(R") and there exists a constant ¢ = c¢(m, n) such
that

Hellen < c([JHTY|[ + {[¥]7),
for every ¢ & D(HY). (3.3)
A related result which is needed below is

Lemma 8.4. For each integer m > 1 and each

e > 0, there exists a constant ¢ = ¢(¢, m, n) such that
[1¥[-s < € [[HTHIP + & []¥]f°
for every ¢ € D(H?%). 3.4)

Proof. If || < 2m and § > 0 it can be shown by an
elementary argument that there exists a constant
v(8) such that [p** < 8lp|*" + ~v(8) for every p:

If ¢y &€ D(H?) it follows that

Wl = o 3 W7 @) dp

< em, m)(8 {IHTI1® + v(9) [1¥1]),
which implies (3.4).
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A final result concerning the operator H, is

Lemma 3.5. Let I denote the identity operator on
L,(R") and let m be a positive integer. Then there
exists a constant ¢ = ¢(m, n) such that

ll¢llm < o(d + Ho)"¢, ¥) for every ¢ € D(HY).
3.5)
Proof. By Lemma 3.1,

[ + Ho)™@)]* = (L + [pI)" ¥*®).

Hence, by Parseval’s theorem,

@+ H, 0 = [+ P @ dp. 6.
Now, [p°] < |p|'®!, whence
S P X BFS 3 A+

al<m
<l + Ipl)”

for a suitable value of ¢. Multiplying this by |y(p) [,
integrating over R* and using (3.1) and (3.6) gives
(3.5).

The Hamiltonian operator H = H, + V is dis-
cussed next. The precise definition of this operator
is based on the following theorem due to Kato.'”

Theorem of Kato. Suppose that there exist con-
stants ¢ and b, with 0 < a < 1 and b > 0, such that

V¥l < a||Hoyl| + b ||¥]] for every ¢ € D(H,).
3.7)

Then the operator H defined by D(H) = D(H,),
H = H, + V is self-adjoint.

It is known® that (3.7) holds if V € L,(R") with
p > 2and p > n/2. In particular, (3.7) holds (with
a = 0) if V is bounded. Criteria that ensure D(H™) =
D(H?%) also are needed below. They can be derived
from

Lemma 3.6. Let m by a positive integer and let
V € C*"*(R"). Then

H™Y = H3y + mVH ™'Y

+

la}l<2m—38

Pfx2m—2)D:¢ for every ¢ € DH?%), (3.8)

where P?""% is a polynomial in V and its deriva-
tives D’V of order |8] < 2m — 2 with constant
coeflicients.

Proof. Direct calculation gives

17T, Kato, Trans. Amer. Math. Soc. 70, 195 (1951).
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Hy = Hyy + Vv,
Hz\b = Hglﬁ + 2VH,y

3.9)

+(vy + @vw -2 3 pvng),
i=1
which verifies (3.8) for m = 1 and 2. The proof is
completed by induction on m. The identity
Ho@#v) = (Hot) = 2 2, Dip Dy + ¢(Hoy) (3.10)

is used. If Q™ is a generic symbol for a polynomial
in V and its derivatives D’V of order |8| < m, with
constant coeflicients, then (3.10) implies

H(VH; ') = VHw + 2, QPDiy

la| <2m—1
and
Ho > P DW= 3> Q¥ Diy
lal<2m-3 || £2m—3
+ 2 QD+ X2 QY Dy
lal<2m—2 la|<2m—1
= 2 Q" Dy.

lal<2m-1

Thus, if (3.8) holds for a certain value of m then
HH"Y = Hi"'y + mVH W + >, Q%™ Dy

la|£2m—1

and

VH"Y

It

VHw+mVH; g+ 2. QP® D%y

la)<2m-3

= VHw + 2 QX" Dy,

la}<2m—2

Adding these expressions gives
H™' = Hi"'Yy 4+ (m + )VH
+ 2

lai<2m—1

Q(Zm) Da ‘#
which is equivalent to (3.8) with m + 1 in place of m.
Combining Lemmas 3.4 and 3.6 gives

Theorem 3.1. Let m be a positive integer and let V
and its derivatives D?V of order |8| < 2m — 2 be
continuous and bounded in R". Then for each a > 0
there exists a constant ¢, depending on a, m, n, and
the bounds for the D?V, |8] < 2m — 2, such that

[|H™y — Hoyll < o [[H3y|| + ¢ |vl]
for every ¢ & D(H?). (3.11)

Proof. The hypotheses imply that Eq. (3.8) of
Lemma 3.6 is valid and the functions V and P®"2
are bounded. Moreover, H7 ™" is a differential opera-
tor of order 2m — 2. Thus, applying the triangle
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inequality to (3.8) and estimating ¥V and P$™"® by
an upper bound and derivatives D¢ with |a] < 2m—2
by |[¥l[sm-» gives

[H™y — Hod|| < M [|¥]lom-s,
where M is a constant. Now, Lemma 3.4 and the

elementary inequality (a* + %)} < |a| + [b| imply

that given any e¢ > 0 there exists a constant

¢’ = ¢’(¢, m, n) such that

H#llem-2 < [[Wllam-r < € [[HTYI] + ¢ |9

Combining this estimate with (3.12) gives (3.11)
witha = Meand ¢ = M¢'.

(3.12)

Theorem 3.2. Under the hypotheses of Theorem
3.1, D(H™) = D(H7%) = Li"(R") and there exists a
constant ¢, depending on m, n and the bounds for
the DV, |8] < 2m — 2, such that

[¥13m < c([H™¥|* + [[¥]]?) for every ¢ € D(H™).
(3.13)

Proof. The statement D(H™) = D(H7) follows
from Kato’s theorem, applied to Hj and H” instead
of H, and H. The estimate (3.11) of Theorem 3.1 is
equivalent to the hypothesis (3.7) for this case.

To prove (3.13) note that (3.11) with ¢ = % implies

WHTwl| < [[H™Y — Hoyll + |[H™]]
< 3 HSWI + o [1¥]] + [[H¢]].
Hence
HHSI| < 2([lH™YI] + <o |[¥1D),

which, with the elementary inequality (@ + b)* <
2(a® + b°) implies

[[HSw|* < 8UIH™¥IF + e [[¥[).

Combining this with estimate (3.3) of Lemma 3.3
gives (3.13).

4. ASYMPTOTIC ESTIMATES FOR SPACE
DERIVATIVES

In this section, the results of Secs. 2 and 3 are
combined to obtain conditions on yo(x) and V(z)
which guarantee that Y.(z, t) — ¢o(z, ) — 0 in
L7%(R™) when t — . The basic estimate is de-

seribed by

Theorem 4.1. Let m be a positive integer and
agsume that

4.1)
4.2)

W. = W.(H, Hy) exist;
Yo € D(H7S), and
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V' (x) and its derivatives D2V (z) are continuous and
bounded in R for |o| < 2m — 2. 4.3)

Then, if
Yo(t) = e """y and  ¢.(t) = e "W i,

Yof) and y.(t) arein () C(— =, o, L™ BY),
4.4)

and there exists a constant ¢, independent of ¢, such
that

[IDid.(t) — Dio@)|-r < ¢ || Diult) — Divo(®llo

for —o <f{< o and 1=0,1, - ---,m. (4.5)

The right-hand term of the last inequality tends
to zero when ¢t — =4, by Theorem 2.1, which
implies

Corollary 4.1. Under the hypothesis of Theorem
4.1,

lim {Diy.(z, &) — Divho(z, )} = 0 in L77'(R")

t—oto

for [=0,1,- ---,m.

Proof of Theorem 4.1. Hypotheses (4.1) and (4.2)
are the hypotheses of Theorem 2.1. Thus ¥, (¢) and
Y.(t)arein C"(— », o, Ly(R"))and for0 <1 <m

Diyo(t) € D(Hy™") and Diy.(t) € DH™)
for k=0,1,---,1.

Hence, by Lemma 3.3, D', () & LI*"**(R") for
Ek=0,1,---,land

Do) — Divpo(7)| [zm-2s
< o[|H; (Divo(t) — Dio(r)
+ [IDio(t) ~ Digo(n)| 2]
= c[|IDIT M () — DT ()]s
+ [[Dio() — Dive()I[5].

For k < I the last two terms tend to zero when ¢t — r,
by Theorem 2.1. Thus

Yo(t) EC(—w, o, L"*R") for 1 =0,1, --- , m

which proves (4.4) for y,(f). The same argument,
with Theorem 3.2 in place of Lemma 3.3, applies to

v (f).

The proof of (4.5) makes use of Lemma 3.5.
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Inequality (3.5) gives
HD:‘P:U) - D:lﬁo(t)Hi._l < C((I 4+ Ho)m—l
X [Diy.(t) — Dido(®)], Dio(t) — Dito(t)

=3 (" ot - mEDw0,

X Diy.(t) — Diyu(D).

Applying Schwarz’s inequality and the triangle
inequality to the inner products in the last sum gives

[IDiga(t) — Didbo(®)] -
<3 (" 7 Yimtv.olh + impivol,)}

k=0

X |[|Dig.(®) — Dido®|lo- (4.6)

Hence to complete the proof of (4.5) it is sufficient
to show that the sum in braces is bounded for
— o <t < o, This is proved below with the help of

Lemma 4.1. Let A = 3 . 1<xA4(x)D2 be a partial
differential operator of order k, with coefficients
A.(z) which are defined and bounded in R". Then
there exists a constant ¢ such that

A¢llo < ¢ I¥lle, forall ¢ € LiR).  (47)
Proof of Lemma 4.1. If ¢ € Lj(R"), then
Ap@) = 2, Ad@) DiY(@).
Applying the triangle inequality gives
lavlle < 2 2, 11D, .8)

where M is an upper bound for the coefficients A..
Moreover,

D%l < (Ig_;,k D2 = [lvlle

for |a| < k. Combining this with (4.8) gives (4.7).

Proof of Theorem 4.1 (concluded). Hy is a dif-
ferential operator of order 2k with constant coef-
ficients. Hence, by Lemma 4.1 and Theorem 2.1,

HsD . (Ollo < ¢ [IDia@llae = ¢ [[H ¥o(®)]l2s-
4.9

Moreover, H' is a differential operator with bounded
coefficients, by Lemma 3.6. Hence, (4.9) and Lemma
4.1 imply

[|HsD: . ®lo < ¢ [¥e@®]laaszr < ¢ [[#2(D)]zm.
(4.10)

The last inequality holds because £ < m and [ <
m — kin (4.6). Next, (4.10) and Theorem 3.2 imply

619

[[H:Di D1l < c(llH™ w18 + [[¥-D5). (4-11)
But, Theorem 2.1 implies
[[¢=®]lo = ||W.ollo = constant
and
H™.®]lo = ||[H™W .!]o = constant.
Hence, (4.11) implies that
[|HED!¢.(D)]]o < constant for —o <t < .
Similarly,
[|He Do)l o= [|Hs ™ ¥o()] lo= [ | Ho"* ¥, || = constant.

Hence, in (4.6) the term in braces is bounded for
— o <t < « and the proof of (4.5) is complete.

5. UNIFORM ASYMPTOTIC ESTIMATES

In this section, the results of Sec. 4 and Sobolev’s
imbedding theorem are combined to obtain condi-
tions which guarantee that ¢, (z, {) and ¢,(z, t) have
continuous derivatives of prescribed orders, and that
DD (2, t) — DDio(z, £) — 0 when t — o,
uniformly for z & R". The following version of
Sobolev’s theorem is used.

Sobolev’s Imbedding Theorem. Let ¢ & L%G(R").
Then

(@) If m > [n/2] 4+ 1, then ¢(x) is bounded and
continuous in E" (after correction on a null set) and
there exists a constant ¢, independent of ¢, such that

max [(z)] < ¢ [[#]]n. (5.1)
(b) If m > [n/2] + k 4+ 1 then ¢(z) has continuous
derivatives D3y(z) of order |a| < k (after correction
on a null set) and there exists a constant ¢, inde-
pendent of ¥, such that

r:lea:f |DZy@)] < c {{¢]lm

lal<k

(5.2)

Part (b) of the theorem is a simple corollary of
Part (a). A proof of the analogous result with B*
replaced by a bounded domain @ C R" may be
found in Sobolev’s book.' A simple proof of Part (a)
may be found in a paper by Nirenberg.'®

Theorem 4.1 and Sobolev’s Imbedding Theorem
imply that the wave packets ¢.(z, ) and ¥o(z, ©)
have continuous space derivatives of order ¥ when
m > [n/2] + k 4 1. The existence of continuous

18 I, Nirenberg, Ann. Scuola Norm. Sup. Pisa, Ser. III
13, 30 (1959).
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mixed (space-time) derivatives is implied by the
following generalization of Sobolev’s theorem.

Theorem 6.1. If m > [n/2] + k 4 1 then

Q C(—w, o, L;(RY) C CR®™. (5.3

Proof. If ¢ € C'(— », », LT'(R")) where 0 <
! < k then derivatives Diy(x, ) € Ly (R") for
—o <t < oandj =01, ---, [ Hence, by
Sobolev’s imbedding theorem, Diy(z, t) € C*(R")
and
max |DDiY(z, D] < ¢ || Dig()|ln-s

zER®
la|<k—1

—w <t< o, =01, (54

This implies that DDiy(z, 1) € C(R") for |a] <
k — 1,0 £ j <l Indeed, applying (5.4) to the dif-
ference y(x, {) — ¥(z, 7) gives

max |DiDi¥(z, {) — D:Di(z, 7)|

ZER™
la)<k-1

for

< ¢ ||IDiY(®) — Dig()]|n—

j<land ¢y € C(— o, o, L} '(R"). Moreover,
a second application of (5.4) gives
max |{DID{7'y(z, t + 7)

zER™
la|<k—1

— DDz, O} /7 — DiDi(x, 1))
<c D7t + ) — DO/ 7 — Didlln-

and the last term tends to zero with 7if 0 < j < I
and ¢ € C'(— », =, Ly7'(R")). Thus, in particular,
D>Diy(x, t) is a partial derivative of y(z, t) in the
classical sense, and ¢(x, £) has continuous derivatives
DDiy(x, t)for o] <k —L0<j <L If
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¢ = Q Cl(— ®, @, L2—I(Rn))

it follows that ¢ has continuous derivatives
DiDWy(z, t)forla| + 1 < kandl=0,1, --- , k;ie.,
‘l/ E Ck(Rn+1).

The principal results of this section are de-
scribed by

Theorem 5.2. If the hypotheses of Theorem 4.1
hold with m > [n/2] + k <+ 1 then y.(z, f) and
¥.(z, t) are in C*(R™*") and there exists a constant ¢,
independent of ¢, such that

max |DiDi¥.(z, t) — DiDio(z, t)]
zER®

< cl|Diy.(®) — Digo®[o]}  (5.5)
for —» << o and all @ and ! with |a] + 1 < k.
Combining (5.5) and Theorem 2.1 gives

Corollary 5.1. If the hypotheses of Theorem 4.1
hold withm > [n/2] + &k + 1 then ¢.(z, t) — ¥o(z, 1)
and its space-time derivatives of order < k tend to
zero when { — =+ «, uniformly in R".

Proof of Theorem 5.2. Since Li(R™) C LiYR") if
j 2 k, conclusion (4.4) of Theorem 4.1 implies that
both ¥, and ¢, are in (i, C'(— =, », L '(R").
Thus ¥o(z, £) and . (z, t) are in C*(R™*"), by Theorem
5.1. Moreover, inequality (5.4) holds for the dif-
ference ¢.(z, t) — Y(z, t), whence

max |DiDiy.(z, ) — DiDiy(z, b))
zER®

< c||Digu(®) — Dido®|lm-

for — o <t < « and |e] + I < k. Combining this
result with conclusion (4.5) of Theorem 4.1 gives
(5.5). This completes the proof of Theorem 5.2.



JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 6, NUMBER 4

Excitation Operators and Intrinsic Hamiltonians

R. K. NesBET

IBM San Jose Research Laboratory, San Jose, California
(Received 18 September 1964)

An operator At that satisfies [H, A"l = hwA't converts a stationary-state eigenfunction of the
Hamiltonian H into another eigenfunction with energy eigenvalue increased by kw. Such operators
describe collective excitations of many-particle systems, and their properties can be used to construct
an intrinsic Hamiltonian that is dynamically independent of the collective degrees of freedom, without
introducing subsidiary conditions. The procedure developed by Lipkin, valid when 7w is real and
positive, is extended to make possible the construction of an intrinsic Hamiltonian when % vanishes
and A1 is Hermitian, and also when /w is complex. The nuclear cranking model is shown to be a
special case of the proposed general method for vanishing %w in which effective moments of inertia
occur ag eigenvalues of linear equations. Several examples are worked out in detail, all dealing with
an interacting phonon-electron system in the random-phase approximation. Results derived are
the explicit sereened Coulomb interaction resulting from electronic plasma excitations, a verification
of the renormalized phonon frequency spectrum and phonon-electron interaction derived in the
adiabatic approximation, and the resulting screened Coulomb and phonon-induced electronic inter-
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actions obtained when plasma and phonon excitations are treated simultaneously.

I. INTRODUCTION

HIS paper is concerned with ‘‘excitation op-

erators,”’ defined as operators that convert one
stationary state of a quantum mechanical system
into another state. The basic equation satisfied by
an excitation operator At is

[H, A'] = hod', 1)

where 7%w is an elementary excitation energy. The
technique of approximating such operators by linear
combinations of simpler operators, then truncating
the resulting linear equations to obtain a closed
system, has been applied in recent years to a number
of physical problems involving many-particle sys-
tems. From the structure of Eq. (1), this technique
is most commonly referred to as the ‘“equation of
motion” method. The same method, when expressed
in terms of matrix elements such as

(4 ¥, ala,¥), @

where a!, a; are elementary fermion creation and
annihilation operators, is a generalization of the
Tamm-Dancoff method, as proposed by Dyson.' The
matrix elements in Eq. (2) are referred to as Dyson—
Tamm-—Dancoff amplitudes.

Some of the more important applications of this
method will be found in papers on the free-electron
gas,”* on the pairing interaction in superconductors,*

L F. J. Dyson, Phys. Rev. 91, 1543 (1953).

* K, Sawada, Phys. Rev. 106, 372 (1957); K. Sawada,
K. A. Brueckner, N. Fukuda, and R. Brout, ibid. 108, 507
(1957); R. Brout, 7bid. 108, 515 (1957).

3 A general review of this subject has been given recently by
D. Pines, Elementary Excitations in Solids (W. A. Benjamin,
Inc., New York, 1963).

+P. W. Anderson, Phys. Rev. 112, 1900 (1958); G.
Rickayzen, Phys. Rev. 115, 795 (1959).

on collective excitations of nuclear matter and of
finite nuclei,® and on excited states of atoms.® A
general discussion of the approximations that can
be made in truncating these equations has been
given by Suhl and Werthamer.”

The particular aspect of this theory that will be
considered in the present paper is the problem of
constructing an intrinsic Hamiltonian, defined so
that it describes those degrees of freedom of a sys-
tem that are dynamically independent of excitations
defined by Eq. (1). A discussion of this subject has
been given by Lipkin.® The need for such a Hamil-
tonian, expressed in terms of the coordinates of the
original set of independent particles, is clear in the
empirical context of nuclear physics, where collective
motions of the nucleus as a whole are combined with
the shell structure appropriate to an independent
particle model.’

In the simplest case considered here, when /w is
real and positive, the technique proposed by Lipkin®
gives an intrinsic Hamiltonian that commutes with
both A" and A4, establishing the required dynamical
independence. A method due to Bohr and Mottelson®

5 A. Bohr and B. R. Mottelson, K. Norske Vidensk.
Selsk. Forhandl. 31, 71 (1958); A. E. Glassgold, W. Heckrotte,
and K. M. Watson, Ann. Phys. 6, 1 (1959); S. Takagi, Progr.
Theoret. Phys. (Kyoto) 21, 174 (1959); G. E. Brown, J. A.
Evans, and D. J. Thouless, Nucl. Phys. 24, 1 (1961); S.
Fallieros, Ph.D. thesis, University of Maryland, 1959 (un-
published).

(19‘;;‘5. L. Altick and A. E. Glassgold, Phys. Rev. 133, A632
(19:3%. Suhl and N. R. Werthamer, Phys. Rev. 122, 359

8 H. J. Lipkin, Phys. Rev, Letters 2, 159 (1959); Ann.
Phys. (N. Y.) 9, 272 (1960).

9 A. Bohr and B. R. Mottelson, Kgl. Danske Videnskab.
Selskab, Mat-Fys. Medd. 30, 1 (1955); C. A. Levinson, Phys.
Rev. 132, 2184 (1963).
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can be used when Aw vanishes. The nuclear cranking
model™ is shown here to be a special case of this
method, which can be used to compute inertial pa-
rameters (moments of inertia and effective masses)
of many-particle systems. Such parameters occur as
eigenvalues of a system of linear equations. In gen-
eral the linear equations implied by Eq. (1) are non-
Hermitian, and the eigenvalue 4w can be complex.
A special procedure for dealing with this case is
proposed here. The imaginary part of a complex
excitation energy computed by this method cor-
responds to the width or lifetime of the corresponding
nonstationary excitation.

Several examples are given, all using the random
phase approximation (RPA),"" and referring to an
interacting electron-phonon system. The first ex-
ample, plasma excitations of a purely electronic
system, has been treated previously,® but the re-
sulting intrinsic Hamiltonian, which contains a
Coulomb interaction screened by the removal of
plasma excitations, has not appeared explicitly in
the literature. In the second example, the present
method for zero excitation energy is used to derive
the principal results of the adiabatic approximation
for the phonon—electron system.'” The third example
considers the problem treated by Bardeen and Pines, "
plasma and phonon excitations of the phonon—elec-
tron system, taking all interactions into account.
The phonon excitations in this case (for a normal
metal) have a natural lifetime, and provide an ex-
ample of the method proposed here for complex
excitation energies. A dispersion relation is derived
that gives both plasma and phonon excitation en-
ergies, as well as the natural lifetime of the latter.
The resulting intrinsic Hamiltonian contains a
sereened Coulomb interaction and a phonon-induced
electronic interaction essentially the same as that
considered in superconductivity theory. The present
derivation does not use perturbation theory, and
the validity of these results is limited only by the
RPA. In all cases the intrinsic Hamiltonian is ex-
pressed in the original particle coordinates, eliminat-
ing any need for subsidiary conditions.®

When the operator equations considered here are
truncated by use of the RPA, they become equiv-
valent to the equations of the time dependent Har-

10 D, R. Inglis, Phys. Rev. 96, 1059 (1954); 97, 701 (1955);
D. J. Thouless, Nucl. Phys. 21, 225 (1960); F. Villars, in
Rendiconti della Scuola Internazionale di Fisica ‘“Enrico
Fermi,” XXIII Corso: Fisica Nucleara (Academic Press, Inc.,
New York, 1963), pp. 1-47.

1 D, Bohm and D. Pines, Phys. Rev. 92, 626 (1953).

12 J, M. Ziman, Proe. Cambridge Phil. Soc. 51, 707 (1955);
G. V. Chester, Adv. Phys. 10, 357 (1961).

13 J. Bardeen and D. Pines, Phys. Rev. 99, 1140 (1955).
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tree~Fock approximation, which can also be derived
by a Green’s function method. In the concluding
section of this paper some of the formal properties
of these truncated equations, discussed and derived
by Thouless,"* will be derived from the algebraic
properties of excitation operators. This analysis dem-
onstrates that the operator orthonormalization con-
dition introduced here is consistent with the assumed
equations for excitation operators, and generalizes
the variational principle for /iw proposed by Thouless.

Only the case of excitation operators that satisfy
boson commutation rules will be considered here.
Similar results can be derived for fermion operators,’
but no intrinsic Hamiltonian of physical interest has
been obtained by the use of such operators.

II. CONSTRUCTION OF AN INTRINSIC
HAMILTONIAN

Suppose that Hermitian conjugate operators 4,
AT are known such that for a given Hamiltonian H,

[H, A" = hod’, (32)
[H, A] = —hwA, (3b)
[4, 4" = 1. (3¢)
Then an intrinsic Hamiltonian can be defined by®
H, = H — hwA'A, (4)
such that
[H,, A"] = [H,, 4] = 0. (5)

It is assumed here that w is real (the complex case
is discussed below). Equation (5) implies that H, is
dynamically independent of At and A. These op-
erators will be referred to as excitation and de-excita-
tion operators, respectively.

Define

Q = W24 + 4),
P = i(hw/2)} (4" — 4). (6)
These operators are a collective coordinate and the
corresponding conjugate momentum. By Eq. (5),
H, commutes with both operators, and describes an
intrinsic system not dynamically coupled to the
collective motion described by P and Q. The effective
Hamiltonian for collective motion is
hwd A = 3(P* + o°Q* — hw). @)
If there exists a function ¥, not identically zero,
that satisfies
HY = EY, (8)
14 1, J. Thouless, Nucl. Phys. 22, 78 (1961).
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then AW and AV are also eigenfunctions of H, with
eigenvalues E + hw, E — hw, respectively. Assuming
that the energy spectrum of H is bounded below,
when fiw is positive, successive multiplications by
A must eventually lead to a function ¥,, not iden-
tically zero, such that

AY, = 0. 9)

Thus ¥, describes the ground state of the collective
motion, an eigenfunction of Eq. (7) with eigenvalue
zero. Corresponding to each eigenfunction ¥ of H
there is a ladder of eigenfunctions and equally spaced
eigenvalues, terminating below when Eq. (9) holds,
and terminating above if, for some nontrivial ¥,,

Ay, = 0. (10)
Equations (3) will not hold exactly for real systems
unless such energy ladders occur, except for the
trivial case

A‘I’;’ = Oy At‘I/i = ‘I,ir A?‘I,i = 01 (11)

for any two eigenfunctions ¥,, ¥, of H.

As Eq. (11) shows, iw = E; — E; can be either
positive or negative, since the excitation operator
could equally well be defined by A'W¥; = ¥,. The
normalization condition chosen here, Eq. (3¢), is
compatible with only one of these alternative de-
finitions. By this convention, an excitation operator
that has negative excitation energy corresponds to
a negative definite collective Hamiltonian, with
ground state characterized by Eq. (10).

Approximate solutions of Egs. (3) are obtained
by expressing At as a linear combination of known
operators.””” The commutators in these equations
are simplified so that [4, A'] is approximated by
a pure number and [H, A'] is approximated by a
linear combination of operators from the given set.
The coefficients in the assumed linear combination
of operators then satisfy linear eigenvalue equations.
The excitation energy %w is an eigenvalue of these
equations, and Eq. (3c) can be used to normalize
the eigenvector. This procedure breaks down if 4
and A' commute, unless fiw = 0.

When %w vanishes, H commutes with any linear
combination of A and Af. If [4, A] does not vanish,
this simply means that H is dynamically independent
of A and A'. A nontrivial special case occurs, how-
ever, when A is Hermitian. Then A and A' are
identical and their commutator vanishes. Such an
operator can be denoted by P, where

[H, P] = 0. (122)
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To construct an intrinsic Hamiltonian in this case,
it suffices to find an operator Q such that

[H, Q] = (hA/9)P, (12b)

where both P and @ are Hermitian, A is a real
number, and

[P, Q] = k/7. (12¢)
Then the intrinsic Hamiltonian is defined by
H, = H — AP, (13)
such that
[H,, P] = [H,, Q] = 0. (14)

The collective Hamiltonian is AP

Approximate solutions of Egs. (12) can be ob-
tained by expressing the operators P and @ as linear
combinations of known operators, solving the re-
sulting linear equations for the coefficients and for
the eigenvalue A.

III. ZERO EXCITATION ENERGIES AND
THE CRANKING MODEL

Given Eq. (12a), the cranking model"® introduces
a Lagrange multiplier A, to define the modified
Hamiltonian

H)‘ = H - )\P, (15)

with eigenvalues E, that correspond to eigenvalues
P, of the operator P. The dependence of E\ on P,
is deduced by eliminating the independent variable
A, and this relationship can be used to construct
an intrinsic Hamiltonian H,, independent of P. If
this procedure is carried out by means of a canonical
transformation

H} = exp (—18,/h)H, exp (iS\/k), (16)

it can be shown that the generating operator S,
differs from the operator Q defined by Eq. (12b)
only by a numerical factor. Hence the two methods
are identical.

To see this in detail, treat \ as an expansion
parameter in perturbation theory. S, is at least of
first order in A, and successive terms in Eq. (16) are

H =H
+ G/R)H, 8] — \P
+ 36@/B[IH, S\, 8] — G/MAP, 8]
4+ a7

Choose S\, so that the second line of Eq. (17)
vanishes,

[H, 8] = (B\/H)P. (18)
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Then if the commutator [P, S,] is a ¢ number, of
first order in A, it follows from Eq. (18) that all
higher-order commutators not indicated in Eq. (17)
vanish. Thus if

[P, 8] = (/) (M/4), (19)

where A is a constant, then without any approxima-
tion,

H{ = H — (¢/2\[P, S\] = H — (\’/24). (20)
The transformed operator P’ is
P =P+ @/B)P, S\] = P + (A/A). (21)
The transformed operator H' is
H' = H{ + \P'. (22

Eliminating A between Eqgs. (20) and (21) it follows
that

H' — H = 3A[(P)’ — P, (23)

or
H' — A(P)’ = H — 3AP. (24)
The operator defined by Eq. (24) is obviously in-
dependent of A and hence of P’ — P. It defines the
intrinsic Hamiltonian of the cranking model.

If Egs. (18), (19) are compared with Eqgs. (12),
above, it can be seen that they become identical if
S, is set equal to (A\/A)Q. This comparison fails
unless the eigenvalue of P varies linearly with A.

IV. COMPLEX EXCITATION ENERGIES

Let ¥ (¢) be the time-dependent Schrodinger wave-
function for a stationary state of the Hamiltonian H.
Then

() = exp (Et/ih)¥, (25)

where ¥ is independent of ¢. Equation (3a) implies
that

.(f) = exp [(B + hw)l/ih]A"Y (26)
is the time-dependent wavefunction describing an-
other state. If w is complex this state is not sta-
tionary. If

[H, A" = hoA’, (27)

and

v >0, (28)

this state decays spontaneously. Such a state would
be realizable physically as the initial state of a
closed system, if it were embedded in a continuum
of other states to which transitions ecould occur in

w = wy — 7Y,
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an essentially irreversible manner. The Hermitian
conjugate operator A satisfies

[H, A] = —ho*A. (29)

Since the imaginary part of —w™* is negative, the
state AV also decays spontaneously.

Because w™* differs from w, it is not possible to
use Eq. (4) to define an intrinsic Hamiltonian that
commutes with both AT and A. It is possible, how-
ever, to generalize this procedure to the case of
complex w by using the time-inversion operator ¢
defined by Wigner.'® Acting on an arbitrary wave-
function or operator, 6 reverses the sign of all linear
and angular momenta. The operator 6 is antilinear,
implying that for arbitrary wavefunctions &, &,
and numerical coefficients «, 8,

8lad, + BB) = a*0D, + £*6D,. (30)

The time-inversion operator commutes with the
Hamiltonian of a closed system. The operators A
or A considered here act directly on wavefunctions,
so the antilinear property must also hold for linear
combinations of such operators. If Eq. (29) is trans-
formed by the operation denoted by 8, it becomes

[H, 0A67"] = —hwbA9". (31)

From Egs. (27) and (31) it can be seen that,
for complex w, At and 846™" have an adjoint rela-
tionship which generalizes that between At and A.
In particular, the operators can be normalized by
requiring

(6467, A" =1, (32)
and in general for independent excitations
[0467", B = 6.45. (33)

The intrinsic Hamiltonian, which commutes with
both A and 64677, is

H,=H — hwA'94067". (34)

This operator is not Hermitian, as might be expected
since the excitation described by AT leads to a non-
stationary state.

The Hermitian conjugate of Eq. (31) is

[H, (0467)"] = ho*(6467Y)".

Comparison with Eq. (27) shows that 467" is just
the Hermitian conjugate of a solution of Eq. (27)
obtained by reversing the sign of the imaginary part
of w. This operator can be denoted by A(w»*), and

(35)

15 K, P. Wigner, Group Theory (Academic Press Inc,
New York, 1959), pp. 325-348.
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Eq. (34) becomes

Hy = H — hod (0 Aw®), (34")

where
[A@¥), A'@)] = 1. (32)

Equation (35) shows that both A(w*) and its
Hermitian conjugate refer to states that could not
be realized as initial states of a closed system, since
such states have amplitudes that increase sponta-
neously as functions of time. The normalization in-
dicated by Eq. (32’) ensures that A(0*) — A(w)
when w is real.

The special case of pure imaginary « has been
discussed by Sawada and Fukuda,'® who show that
this situation is characteristic of physical systems
whose true ground state is qualitatively different
from an assumed independent particle state, as in
the BCS theory of superconductivity. Imaginary «
implies that overly restrictive approximations have
been made in simplifying the expansion of an excita-
tion operator as a linear combination of known op-
erators. The equations for the coefficients in such
an expansion must be modified by carrying out a
canonical transformation of the assumed basis op-
erators, in analogy to the Bogoliubov—Valatin trans-
formation in superconductivity theory.

V. COLLECTIVE EXCITATIONS IN METALS

The electron—phonon Hamiltonian is assumed to be

H=H. + H,+ H,, (36)
where
H, = 2,600, + 1Mplp,, (87)
H, = $2.0.p + %g.q.), (38)
H,, = Zaipg.. (39)
The electronic density operator is
Pe = Zeuloilossss = Plry (40)

where a;,, a,, are creation and annihilation operators,
respectively, for electrons in Bloch waves of mo-
mentum ¢ and spin m,. Only longitudinal phonons
are considered. The summation over phonon mo-
mentum x in Eq. (38) is restricted to the first
Brillouin zone, while the x summations in the other
equations are unrestricted. The traveling wave rep-
resentation is used, implying

t t
P =DP-; Q= G- (41)
18 K. Sawada and N. Fukuda, Progr. Theoret. Phys.
(Kyoto) 25, 653 (1961).
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The Hamiltonian of Eq. (36) is that considered
by Bardeen and Pines,'* who discuss the interpreta-
tion and derivation of each term. This Hamiltonian
describes the unscreened interaction between Bloch
electrons and ionic cores. If the latter are assumed
to be point charges of charge Ze and mass M, of
which there are N in total volume V, the constants
in Egs. (38) and (39) are approximated by

W = 422N/ MV (42)

and

vi = @L)* =

—i(N/ MV (4rZe’ /). (43)

Thus @, is the classical plasma frequency for the
ion cores, independent of %, while v, the Fourier
coeflicient of the gradient of an unscreened Coulombic
interaction, is singular as ¥« — 0. The electronic in-
teraction is assumed to be the unscreened Coulomb
interaction,

M = 4z’ /. (44)

In Eq. (39), when x is outside the first Brillouin
zone, the operator ¢, refers to the phonon mode
x — K in the first zone, where K is a reciprocal
lattice vector. The coefficients ¢, in Eq. (37) are
assumed to be independent of spin and to satisfy
(45)
They are the one-electron energies of Bloch waves
for electrons moving in the periodic potential of the
ionic cores in their equilibrium configuration. A
divergent constant term, representing the potential
due to a uniform distribution of charge in the
assumed volume V, is canceled between H, and H,
and is omitted from Eqs. (37) and (39).

The random-phase approximation (RPA) of Bohm
and Pines'*''® will be used to simplify the com-
mutators given by Egs. (3) for excitation operators.
In general, this means that only terms connecting
operators that represent the same momentum trans-
fer x are retained, that the electron number operators

(46)

are replaced by ¢ numbers, their mean or statistical
values in some specified state, that exchange terms
in the electron—electron Coulomb interaction are
ignored, and that in commutators like [H,, ala;] only
those terms are retained that are of the form (const)
a;a,, where (const) is a function of the number
operators. These simplifications lead to the following
approximate expressions for the commutators:

€ = €_g.

_ 1
fu = Qgallys

1 1
[Hei av+x.aavs] = (ed+x - ea)a¢+x.aaru

+ Mi(foe = fore ot (472)
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[Hne, af:+x.aarn] = vix(fa' - fﬂ+x.s)q:' (47b)

Other commutators needed here, evaluated without
approximation, are

(Hoo, D] = Z,0h0%000,, (48a)
[H,, p] = ihQ2q,, (48b)
[H,, ¢] = —ihp,. (48¢)

In Eq. (48a), « is restricted to the first Brillouin
zone. The summation is over all momenta x, such
that

¥, =+ K,

where K, is a reciprocal lattice vector.

(49)

A. Electronic Plasma Excitations

In the RPA, Eqgs. (3) for the electronic Hamil-
tonian H, have solutions of the form

Al = Zo,0(x85)001c, 0 (50)
The coefficients « satisfy the linear equations
(ho — €rus + €)x(x65)
= MiZ.0.(fors, = forves)a(xd’s)  (51)

subject to the normalization condition (assuming
that w is real)

zu la(de) 12 (fn - fﬂ+n) = 1.
Equation (561) implies that

C"x[l - Mzzn(fn - ftr+x.a)/(h("’ — €54q + ev)] = O'
(53)

(52)

where

Cx = Eca(fn - fﬁ_,",)a(l{dS). (54)

Hence either ¢, = 0, which gives the continuum
solutions of Eq. (51), or else the square bracket in
Eq. (53) vanishes, giving the dispersion relation of
Bohm and Pines® for the plasma excitation fre-
quency w,,

1 = Mzzas(fas - fﬂ+x.a)/(h<‘)x = €r+x + ev)' (55)

A stationary plasma solution exists only when the
integrand in Eq. (55) is nonsingular, requiring Aw,
to exceed the maximum value of ¢,,., — ¢, for which
fos — Jssx,» does not vanish. If statistical values
are given to the electron number operators f for
finite temperatures, when the indicated sum is re-
placed by an integral a singularity occurs within
the region of integration because €., — ¢, has no
maximum value. Hence the integral in Eq. (55) is
complex and Eq. (55) will in general have a complex

R. K. NESBET

root w,, implying a nonstationary plasma excitation.

When the imaginary part of %w can be neglected,
the normalization constant C, can be evaluated by
differentiating the dispersion relation.”” Equation
(55) can be written as

1 = e’F(x, hw,). (56)
Differentiating with respect to ¢°, this gives
il R
But Eq. (52) is equivalent to
—MC¥ 9F/3(hw) = 1, (58)
which implies
Cr = &[d(hw) /de’ )M, (59)
and
a(xés) = {e’[d(he,)/de"|M )P
X [(hwo — € + &)™, (60)

If these results are substituted into Eq. (4), the
residual electronic interaction in the intrinsic Hamil-
tonian is

32202, M;
% [1 3 e’d(hew,)’/de’
(MK T €rix + E,)(h(l),: -

t T
X aa+x.:aataa,a;av,+x,a- .

€. e T ea,)]
(61)
Since w, is given approximately by®
w; = wp + oo+ -0, (62)

the coefficient in square brackets in Eq. (61) is
approximately
1 — (/) = /(¢ + N), (63)
where
A2 = 5wl/308. (64)
The classical electronic plasma frequency w, is given
by
wi = 4we’NZ/mV, (65)
since electronie density is Z times ion density in a
neutral metal. The constant v, is electron velocity
at the Fermi surface. Equations (61) and (63) show
that the intrinsic Hamiltonian describes a screened
Coulomb interaction, with M? replaced by

MAWE/(¢ + N = 4ne’/(E + AD). (66)

17 K. Sawada, K. A. Brueckner, N. Fukuda, and R. Brout,
Ref. 2.
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B, Phonon-Electron Interaction in the
Adiabatic Approximation

In the adiabatic approximation, electronic wave-
functions that depend parametrically on the lattice
ion displacement normal coordinates ¢, are obtained
as eigenfunctions of H, 4+ H,.. The electronic energy
eigenvalues are then functions of ¢, and are added
into H, to provide a Hamiltonian that describes
lattice vibrations.

Sinee H; = H, -+ H,, obviously commutes with
g., this provides an example of the use of Eqgs. (12).
It is convenient here to relabel the operators, and
to solve the system of equations for both +x,

[H:, Q] =0, (672)
[Hy, P,] = ihAQ!, (67b)
[P., Q] = R/, (67¢)
which lead to an intrinsic Hamiltonian
H, = H, — }2.400., (68)
where Q: = Q_,, PI =P_,and A, = A_,.
Let
Q= gu (69)
and choose the coefficients in
P, = Z,.a(xds)ar., 0. + B0)p.  (70)
so that Eqs. (67) are satisfied. Then
Bx) =1, 71)
2,05 (for = fore.a(xds) = dhA,, (72)
and
a(xds) = (A/Dvf(eree — €], (73)
where
Ve = v + (Me/iR)Z0i(for = foseda(xds).  (74)
A screening constant can be defined by
M= EMEZ,(for = forea)/(€rse — &), (75)

obviously positive and nonsingular as x — 0. In
terms of A%, Eq. (74) becomes

v = vy — A2/,

= [*/(¢ + )i, (76)
and Eq. (72) becomes
A = M, — o). D

When H; — H, of Eq. (68) is combined with H,,
the effective phonon Hamiltonian is

H. = 1Z.(pp. + ©q.9.), (78)
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where
wi = Q + A (79

Equations (42), (43), (76), (77), and (79) can be
combined to give

wp = Q/(&* + X). (80)
When « is small this is of the form ? = «°s*, defining
the longitudinal sound velocity s.

Since the intrinsic Hamiltonian H,, defined by
Eq. (68), commutes with both P, and @, = g¢,,
its energy spectrum is not affected by setting ¢,
equal to zero, thus removing both H,, of Eq. (39)
and the explicit collective term in Eq. (68). The
residual phonon-—electron coupling arises solely from
the presence of the operators p, rather than P, in

H! of Eq. (78), since the former do not commute
with H,. From Egs. (70), (71), and (73),

p: = P:: + ?:kvxzus(ea+x - ec)_la:+x,xao'x' (81)

When this is substituted into Eq. (78), the three
resulting terms are the modified phonon Hamiltonian

HY = 32P.P. + «iQ:Q.), (82)
an explicit phonon—-electron interaction

H!, = 2.2, [/ (eree — €)]Pla}er 00 + c.c.},
(83)

and a correction to the original electron—electron
interaction,

B ln 2

6,) (5«:, >

AH, =

(S

z’xzvazd‘:ar Ea,)

1 +
X ac+x,savla¢;s.aa,+x,a; >

(€¢+ =
(84)

These results are identical with those obtained
by Chester,'® who used a canonical transformation
method to derive corrections to the usual Born—
Oppenheimer approximation. Equation (84) does not
represent the true phonon-induced electronic inter-
action, since it will be modified by a canonical
transformation that removes the interaction term
H;, of Eq. (83)."® A more careful analysis of Egs. (73)
and (74) shows that the energy denominator ¢,., — e,
should eontain a small imaginary part, which re-
moves the apparent singularities in these equations.

The summation over reciprocal lattice vectors K,
in Eq. (48a) has been ignored in deriving the equa-
tions used here. If all terms were kept, these equa-
tions would couple all values of ¥ connected by
reciprocal lattice vectors. This approximation is not

18 T. R. Koehler and R. K. Nesbet, Phys. Rev. 135, A638
(1964).
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the same as neglecting all umklapp processes (x
outside the first Brillouin zone), since the value of
x defined by the electronic momentum transfer may
or may not lie in the first zone. The phonon index
x here must be interpreted as the particular value
of x — K that is in the first zone. Neglecting all
but a single value of x is in the spirit of the RPA,
but it is not required by the present formalism and
is done here only to provide a simple example of
the present method.

C. The Phonon-Induced Electronic Interaction

The methods described here can be used to elim-
inate both plasmon and phonon collective excitations
from the full Hamiltonian H of Eq. (36). The in-
trinsic Hamiltonian then contains an electronic in-
teraction modified by plasmon screening and by
addition of a phonon-induced term, where inter-
actions between the two types of excitations are
fully taken into account.

Equations (3) for the Hamiltonian H, in the RPA,
have solutions of the form

Al = Z,.0(x69)a, ¢ .00 + B®D, + v(1)q1, (85)

if umklapp terms that connect different values of
x are ignored. Here x is the electronic momentum
transfer, and p, and ¢, refer to the appropriate
phonon mode in the first Brillouin zone. The linear
equations satisfied by the coeflicients are, using
Eqgs. (47) and (48),

(hwo — €oux + €)a(x0s)
= M2, i, — Jorens)alxd's’) + ihif(x),
hoB(x) = —thy(x),
hoy(x) = RUB(K) + 01, Z0(fos — forr.Ja(xds). (86)

If the auxiliary parameter C, is defined by Eq.
(54), above, these equations reduce to

_ | e AN C,
a(KdS) - [Mx + O)2 . Qi] 714.0 — €un + €, y (87)
B(x) = vL,C./th(w’ — 23, (88)
() = twB(x). (89)

Following the derivation of Egs. (53) and (55), above,
unless C, vanishes, » is determined by the modified
dispersion relation

i |

]”‘; : :Iz ,fn _ fa+x.n .
W = BT o — et e
It can easily be seen that both Egs. (55) and (80)
can be derived from this equation when ¢ is small,
the latter result requiring also that %w be neglected

L= o 90)

R. K. NESBET

in the energy denominator. Thus in general, when
the summation is replaced by an integral, Eq. (90)
has two positive roots, w,, for the modified plasma
excitation, and w,, for the modified phonon excita-
tion, where w,, >> w;,. Since w,, lies within the range
of €4« — &, the integral in Eq. (90) is complex,
and w,, will be complex. Phonon excitations are
expected to be nonstationary because they can decay
into the degenerate continuum of electron excita-
tions. The natural width or lifetime can be computed
from Eq. (90).

When o is the modified plasma frequency w,., it
follows from Eqgs. (43) and (65) that the second
term in the square bracket in Eq. (90) contains a
factor m/M, and thus can be neglected for all
practical purposes. Hence the plasma excitations are
adequately described by the analysis given above
(Sec. VA), and the resulting sereened Coulomb in-
teraction in the intrinsic electronic Hamiltonian is
given by Eq. (61).

By making appropriate definitions, the derivation
following Eq. (75), above, can be repeated almost
verbatim. Define

ve = v + (MI/Z0(for = fore.Ja(xés)/B(x),  (91)
and
>\z = Kzﬂlizvs(fda - fa+x.s)/(ev+x - € — h(-l’l,,(). (92)

It has been shown by Chester'” that the integrals
occurring in Egs. (75) and (92) differ only by a
term of order m/M ~ 107*. In the present case
Eq. (76) follows from these definitions, exactly as
written, as does Eq. (80) for the renormalized phonon
frequency. The dispersion relation, Eq. (90), leads to

Q= MD: (e — D), (93)

which is identical in form to Egs. (77) and (79).
Eq. (87) becomes

a(xds) = (h/i)vxﬁ(K)/(ﬂrﬂ — € hwbx)y

which may be compared with Eq. (73), above.
Since w,, is complex, the solution denoted by A} (w)
should be chosen so that Im w < 0. The operator
denoted by A.(w*) is then obtained by taking the
Hermitian conjugate of the solution A!(w*) with
Im w* > 0. Since all coefficients in Eq. (90) are
real, it is obvious that complex roots occur in con-
jugate pairs. Thus A,(w*) is obtained from A}(w)
by taking the Hermitian conjugate af all operators
and the complex conjugate of all numerical coeffi-
cients, but always treating the parameter « as if
it were a real number. For traveling waves, the
commutator in Eq. (32) is replaced by [4_,67*, A]].

2
Wy ™

(94)
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If a(xds) and y(x) are expressed in terms of B(x),
by Eqgs. (89) and (94), the normalization condition,
Eq. (32'), becomes

B = 5 [1 LR o

2hw  O(hw)
fﬂa _ fﬂ+x.a ]—1
X Zo 50 (95)

Since, by Chester’s analysis,'® the sum over és in
this equation depends on Aw only to the extent of
a correction of order 107*, the second term in square
brackets is of this order and it can be neglected.

The phonon-induced electronic part of the final
intrinsic Hamiltonian follows from Egs. (347), (94),
and (95). It is

AHe = —%Exznzvu.

B o
— € — ha’bx)(emi-x -

t t
X a¢+x,aavaau';a:am+x.aﬂ

X

(E,.H‘ €, — h(‘obl()

(96)

This interaction contains a term analogous to that
considered in the theory of superconductivity, which
is known to lead to a finite energy gap in the elec-
tronic excitation spectrum. When there is such a
gap, it is to be expected that the Bogoliubov—Valatin
canonical transformation, which modifies the elec-
tron annihilation and creation operators, will modify
the energy denominators appearing here. In partic-
ular, in Eq. (90), %w should become complex only
when its real part exceeds the electronic energy gap.

V1. FORMAL PROPERTIES OF
EXCITATION OPERATORS

If hw is assumed to be complex, with negative
imaginary part, the equations considered here are

[H, A"l = ho, A",
[4°, H] = hw,A’, (97)

where A’ denotes 6467*. Consider some other excita-
tion operator BT with excitation energy Aw,. Then

[B’, [H, A"]] = ho,[B’, 4'],

[[B’, H], A"l = hwb[B’, A]. (98)
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The difference between these two equations is

[H, B’ A"l = hw. — w)[B’, A"l.  (99)

This equation shows that the orthonormalization
condition given by Eq. (32) is consistent with the
assumed operator equations. If w, # w, Eq. (99)
implies that [B’, A1] is itself an excitation operator.
If this commutator is approximated by a ¢ number,
the left side of Eq. (99) vanishes, which requires
that the number must be set equal to zero. If
ws = wy, [B’, A is a constant of motion, and can
be set equal to unity or zero as a normalization
condition. Thus different eigenvalues of Eqs. (97)
correspond to orthogonal operators, which can be
normalized unless [A° A'] vanishes. Degenerate
solutions could be orthonormalized by the usual
Schmidt process.

The variational principle proposed by Thouless'
can be generalized by using the operator algebra
that leads to Eq. (99). In particular, if an excitation
operator that satisfies Eqs. (97) is modified by an
infinitesimal variation 84 that preserves normaliza-
tion, so that

[64°, A"l + [4°, 54" = 0, (100)
then it can easily be shown that the quantity
ho = [A°, [H, A'l/[4’, 4] (101)

is stationary with respect to such a variation. This
result is proved by replacing 4 by A + 84, and
then using Egs. (97) and (100) to show that all
first-order terms vanish. The stationary value of
Eq. (101) is equal to the excitation energy #w,.

The operator orthonormalization considered here
can be used to discuss vector-space properties of a
given set of operators, in analogy to the discussion
of the completeness of the set of random phase
approximation excitation operators given by Thou-
less,"* who noted that solutions of equations anal-
ogous to Egs. (12) were needed to complete the
set of excitation operators. The proof given here
in Sec. III, is a generalization of the remark made
by Thouless that these equations are identical to
those of the cranking model.
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The stabilization of a spatially homogeneous plasma by the collision term of the new kinetic equa-
tion of Balescu for a weakly unstable plasma is shown for a simplified model. The one-particle velocity
distribution consists of two symmetrically displaced Lorentz distribution functions in which the
displacement velocity and velocity spread are functions of time. For this distribution function, the
collision term decreases the displacement velocity and increases the velocity spread until the plasma
is quite stable. Physically this process can be viewed as conversion of relative energy to kinetic energy.
This is demonstrated to be equivalent to the passage of the zero of the plus dielectric constant
from the upper half complex plane, characterizing an unstable plasma, to the lower half complex

plane, characterizing a stable plasma.

INTRODUCTION

KINETIC equation for a spatially homoge-

neous plasma in the case of weak instabilities
has recently been derived by Balescu.' It reduces
in the case of an extremely stable plasma to the
kinetic equation for the plasma previously derived
by Lenard® and Balescu.® New collision terms of
the Fokker-Planck form, highly nonlinear in the
velocity distribution function, are found. The char-
acter of the collision term drives the system toward
stability.

To demonstrate the stabilization of the system
by collision terms we chose a particular model for
the one-particle velocity distribution function, the
symmetric Lorentz form. Physically this can cor-
respond to electron or ion beams where the relative
velocity of the two beams and the velocity spread
of the beams are functions of time. It is shown
explicitly for this model that the enhanced collisions
do drive the system toward stability. As the relative
velocity decreases and the velocity spread increases,
the velocity distribution function of the system
reaches a stable form. This is equivalent to the
conversion of relative energy of the two beams to
random kinetic energy of each beam. The model
corresponds to two electron beams in the presence
of a positive background. The Lorentz distribution
function is shown to be consistent with the kinetic
equation for the weakly unstable and just stable
regions which are the regions of interest.

Mathematically, an unstable plasma can be re-
lated to the presence of zeros of the dielectric con-
stant in the upper half complex plane. The stabiliza-
tion of the system is characterized by the passage

* Present address: Space Physics Division, NASA-Ames
Research Center, Moffett Field, California.

t R. Balescu, J. Math. Phys. 4, 1009 (1963).

2 A. Lenard, Ann. Phys. 3, 390 (1963).

3 R. Balescu, Phys. Fluids 3, 52 (1960).

in time of v, the imaginary part of the zero, into
the lower half complex plane. One can, for our
simple model, relate dy/dt to the time derivative
of the relative energy where dvy/dt is always de-
creasing. As v eventually passes into the lower half
complex plane or the plasma stabilizes, the mathe-
matical and physical requirements for stabilization
are connected.

First in Sec. I we consider the instability require-
ments and the unstable kinetic equation. Then in 11,
the particular model, Lorentz velocity distribution
funetion, is discussed and total energy conservation
expression evaluated. As the latter is inadequate
to describe the stabilization, the conversion of rela-
tive energy of the beam to heat energy is utilized
as a criteria in III.

I. BASIC EQUATIONS

The concept of unstable plasmas arose from the
study of plasma oscillations."*'> A stable plasma is
one which can support only damped osecillations in
time, whereas an unstable plasma can support expo-
nentially growing oscillations. These oscillations are
the collective oscillations of the density or electric
field of a slightly perturbed plasmsa which obeys the
linearized Vlassov equation. The criterion for stabil-
ity of a plasma is given by the dielectric constant
€' (»), defined here for real frequency
'i‘n'wf,

~-

) = 1 f dv 8(ly — 1-v)1- 3(v)
= € + 1:62. (1)

The w, is the plasma frequency, 1 the wave vector,
and ¢(v) the one-particle velocity distribution. The
8. functions are defined by

6. = 8(X) & i(P/m)1/X). 2

¢ L. Landau, J. Phys. (USSR) 10, 25 (1946).
5 J. D. Jackson, J. Nucl. Energy Pt. C, 1, 171 (1960).
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If ¢'(») has one or more zeros in the upper half
complex plane, the plasma is unstable. Here we re-
strict ourselves to the case of one zero {., or

€)= — )"0 ®3)

and ¢, is also a function of I. The existence of an
unstable root depends upon the shape of the one-
particle velocity distribution ¢(v) or more precisely
the barred quantity &(v) obtained from ¢(v) by
integrating over velocities transverse to !:

56) = [ sy ~

The (¥) must be at least double-humped in » space
for an unstable zero to occur.

The plus and minus functions, ¢/(¥), which enter
the expressions for ¢*(v), are defined in general by

l—.l!) dv. (4)

400 = 23 [ 6.6 - A@ @, 6

or Eq. (3) can be expressed by
') = 1 — imy@l )/ (6)

The magnitude of the imaginary part of the un-
stable root determines the degree of instability. If

$o = wp + 7'."/; (7)
then the requirement for weak instability is
Iy < w,, ®)

where the maximum possible ly for a given plasma
must be much smaller than the plasma frequency
w,. If the zero ¢, is in the lower half plane but

| K w,, (9)

still holds, the system is weakly stable. This re-
quirement is equivalent to a separation of the colli-
sion time scale w; " and the longer stability time (Iy) ™.

Recently a kinetic equation for a spatially homoge-
neous plasma for ¢(v) has been derived in the un-
stable case. The characteristic feature of this equa-
tion, in the weakly unstable regime, is the occurrence
of new “‘stabilization terms”’ which add to the normal
collision term.

The kinetic equation for ¢(v) has the following
form:

2 il
ow(v; ) = —at [ L G-05,w; ) (10)

in the unstable case,® where &,(v; t) is defined by
the following integral:

¢ R. Balescu, Statistical Mechanics of Charged Particles
(Interscience Publishers, Inc., New York, 1964).
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—ilwt

F1(v; ) = —5

(v; w). (11)

The explicit form of F;(v; {) in the weakly unstable
and stable case is then

Fi(v; ) = Im {llé(fv(;;)o—) + Llid,(v)
dv6_(v — v)R@;0) | et
X o=t - T =50
% [—ql(V; v — ) 2r diWBE;v — si)]
(¢ l v —¢)
—i(de—t-)1¢ 21r1,d1(V)R(§'+, ¢ — ¢ )}
+e e — £ — £2) (12)

where it should be noted that only the imaginary
part of the right-hand side of Eq. (12) contributes
to the collision integral. The third term may also

be rewritten as
g Ui [—ql(V;v ~ )+ q’i(V;O)]
v —¢) o (£-)e ()

as a form useful in finding explicit expressions for

dU/dt and d&./dt. The following quantities are de-
fined for convenience:

a(V;w) = ¢, + g2 =3 ( 2l2)fdv

X 6.(lov — lo — 1-v)1- (8 — 8, )ee, (13)
for ¢, and g, real functions;
R(v; w)
_ (et ) Pl — ©)p. () — p-(v — )&\ ()
B <4:1r20l2 c (e (b — w) ' (14)

The explicit forms of the kinetic equation for
weakly stable and unstable plasmas are given in
(6.6) and (8.7) of Ref. 1. The expressions for ,(v; t)
for the two cases are different in appearance after
the rapidly oscillating term e*'~°~* is smoothed
out, but the two solutions are continuous. The two
expressions for &, are, however, valid in many
physical systems for only a limited range of 1 space.
For a given system the zero of ¢ can lie in any
of the three regions defined in Fig. 1, depending
on the value of 1. Since the choice of unstable,
stable or normal form of ¥, depends upon the location
of the zero of €', then in general a collision integral
is a sum of three terms, weakly unstable, weakly
stable, and normal F,(v; ¢), each integrated over
a portion of 1 space. These regions of 1 space are
called U, for weakly unstable, S for weakly stable
and N for normal stable cases.



632

z space
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~¥ max AT TR

mmrweakly unstable
wy weakly stable
I normal

Fia. 1.

The regions of Fig. 1 in the complex plane cor-
respond to integration regions of 1 space. In Fig. 1
the value of ¥ is the maximum acceptable value
of v, some fraction of w,/l. For a particular system
¢*, the zero of €', lies between 7 and 0 for the weakly
unstable case. The strip chosen for the weakly stable
case is somewhat arbitrary but leads to simplicity
in calculations and separates clearly the collision
and unstable time scales. For v < 7, the collective
transient is no longer sufficiently long lived to be
considered separately from the other transients. It is
dropped and the usual normal collision term is re-
covered for the normal stable case.

Many physical systems may be deseribed by these
equations (i.e., electron-ion beams, electron beams,
or ion beams). Here we consider the particular
model, applicable to electron beams in a positive
background with a symmetrically displaced Lorentz
velocity distribution function. The Lorentz velocity
distribution function is defined to be

o(v) = ¢'(V) + &°(v), (15)
where
o' = (uo/2m)[(v F vo)* + ug) 7,

the upper sign referring to ¢'. Also the barred fune-
tion o(v) is

Uo

o 1 1 .
0) = 5 [(v - w,f F et o T uﬁ] (16

The velocity spread is given by u,, and the mean
velocity by =v, for ¢' and ¢°, respectively. Here

an

vo = 1w/l = vou,

where u is the cosine of the angle between v, and 1,
the wave vector. The parameters u, and v, are func-
tions of time or the shape of the velocity distribution
can change. If the system is originally unstable, the
frictional-diffusion action of the additional collision
terms can be expected to reduce v, and increase wu,
to stabilize the system. The distribution funection

B. W. ABRAHAM

is a model similar in spirit to one used by Dreicer.”
He demonstrated that the shape was retained by
energy arguments. Here it is simpler to see that
all quantities do not change greatly in the passage
from weak instability to weak stability. Within the
approximation in which all quantities the order of
v/w, are dropped, we see that the use of Lorentz
distribution funection is consistent with the kinetic
equations. For example the maximum possible change
of ¢ can be seen below to be

Ap/e = 0(F/uo); (18)

or it is quite small; therefore the fact that ¢ retains
its shape during the stabilization process is not sur-
prising. Once the system reaches the normal stable
region, the Lorentz distribution function can no
longer be assumed, but from previous results one
expects the system to approach equilibrium.

The limits of integration in 1 space for the three
cases are very model dependent, differing for dis-
placed Maxwellian and Lorentz veloeity distribution
but having the same general appearance. For the
Lorentz velocity distribution funetion, we have the
expression for the zero of ¢ in the upper half
complex plane in the unstable case,”

by = —lu = [@Fuviw; + dur)?

F/u, L 1,

— Pus — depl. (19)
The requirement that the system is weakly unstable
gives

(20)

The above inequality must hold for all y(I) as a
function of (I, ). In the limit of small /, we have,
using (19) and (20),

v <KL U

—F L vgp — u < 7, @1

where 7 is the maximum acceptable values of ¥,
some fraction of u, at equilibrium. From Eq. (21)
we find, setting u = 1, the range of relative velocity
for which the system will be in the entire range
of 1, at most, weakly unstable or stable.

Using this range and (21), the limits on u follow
for positive u as the integrand is even in u. The
limits on [ are found by solving (19) for [ and then
using the approximate range of u.

Weakly unstable:

U/t S p < 1,
0 <1< @’ — wd)/(wow’ + udwy;

22)
(23)

7 H. Dreicer, Phys. Rev. 115, 2 (1959).
8 Reference 6, p. 114.
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Weakly stable:
(o — 7)/vo < p < min (1, ue/v,),
+ uglo,) < 1

where the limits automatically insure that the new
collision terms disappear for the normal case.

For approximate evaluation of integrals the sim-
plified limits are helpful. The maximum possible
range of u for weakly unstable and stable cases is

1=2<p<1, (26)

(24)

max [0, 0u® — ug)}/ (i’ (25)

€= 7/“0;

and [ is
0 < 1 £ (@M who/uo). (27)

It should be noted that u, although a funection of
time varies only by a factor (2).

The knowledge of the mean kinetic energy and
correlation energy is insuflicient to give the stabiliza-
tion of a plasma as is seen below. For the normal
term® dU/dt = 0 so that only the new collision
terms contribute. If the mean kinetic energy U and
the potential correlation &, are defined by

= [ 4mite(w; 0 av,

b = [ 170 L, 28)
where g, is a two-particle correlation funection, then
the sum is conserved as can be seen by a simple
derivation from the kinetic equations,

dlU + &..]/dt = 0. (29)
Using the kinetic equation (19), we have
dﬁ? = 47re"’cfd1fdvf dr Z3,(v; ).  (30)
o l

The relation (12) for §,(v; t) substituted in Eq. (30)
gives

dl 2mri)(i¢. D)
= dne'e f T — )

% [87!‘ zce +(§‘+)i'R(§‘+: ¢ — §' )627“

dl 2ri)(i¢. 1)
s U —¢0)

X [8” icg’ -'<r+)]R<f+, Co— e,

+ 4w’

8D

where the integration is over the volume of 1 space
as specified. The analytic continuation of &.({.)
gives
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¢1(§-+) = (9’—({+) -+ ¢(f+) (32)

for the stable case where
Bxice’/mI)@i(¢.) = 1 33)

from the definition of the dielectric constant ¢ (¢.)
and the fact that {, is a zero. Also from Eq. (31)
we have the relation

@xice’/mI)e’ (£+) = € (52). 34)

From Eq. (14), again using relation (33), we find
a simplified expression for E:

R(f+; $o — f—)
=1 (. —¢) so(v) dv
S S GOrd &
where for the Lorentz distribution we have
) dv Uy + v i
G+ w9

Then substituting Eqgs. (32) to (36) into (31) gives

au _ & [ dl_é&™" U + 7y
dat 27’ ves b |0'+(§'+)|2 [Vg + (’Uo +‘Y)2]

& [ dl_ vy U + v
s I [U+(§‘+)I2 [Vg + (up + 'Y)z]

X 203[3v — (o — 7). 37

From Eq. (37) we see that dU/dt has no definite
sign or the stabilization cannot be deduced from
this term. The time derivative of the kinetic energy
of each beam is shown, however, to have a definite
sign.

II. CONVERSION OF RELATIVE ENERGY
TO HEAT ENERGY

In this section we demonstrate that the plasma
stabilizes under the combined effect of enhanced
diffusion and friction of the new collision terms.
The relative energy is converted by collision into
heat energy or random energy. (It should be noted
that the kinetic energy of the system and the heat
energy of each beam are not finite for the Lorentz
velocity distribution function, but the time rate of
change is. For a more realistic model these quantities
are, of course, well defined. The essential condition
for stability, that the relative velocity of the peaks
decreases and the velocity spread increases is shown
explicitly.) This is equivalent to a decrease in the
relative velocity v, and an increase in the thermal
velocity u,. These changes cause y to decrease as
seen from (19) until the system is stable. The plasma
is assumed to consist of two beams described by
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the symmetric Lorentz distribution function. As we
discuss the stabilization of the plasma by means
of certain macroscopic parameters, these are here
defined as moments of the one-particle distribution
function as follows:

Mean velocity

0. = [ veiavpe, (38)

where ¢; is the density of particles for this example.
The subscripts (¢ = 1, 2) refer to the beams; the
absence of subscripts indicates that the quantity
refers to the entire system.

Heat energy of beam
%f mi(v — q.)’¢; dv;

&r = 3¢,kT, = (39)

Relative energy of beam
8. = ¥me(q: — Q7 (40)

Kinetic energy of system

ym f Fodv.  (41)

The kinetic energy of the system U in general is
related to the energy of the beams

U= E Er.: + &)+ %mcqz.

U = ickT + imeq® =

(42)

For the special model chosen here, q, the mean
velocity of the system, vanishes. The vanishing of
dq/dt for this model further simplifies the expression
for the time derivative of the drift energy.’ From
Eq. (40) and the two above properties of @ we have
that

de,/dt = (43)

The kinetic equation for each beam can be found
in a similar fashion to that found for the entire
plasma. Only one beam need be considered as the
two beams are symmetrical. The kinetic equation
for a beam is

o'V 1) = —ol f dl 71- 3G, (v),
where @ is defined by Eq. (12) and G is defined as
G](V) = Fy; + Fyp.

F.; is the correlation funetion of ¢ and j particles
integrated over one velocity. If one defines F,(v)
to be the sum of all F,;,

Meve - dv,y/di.

(44)

Fiv) = (45)

1
ZFii)
$,7

? This can easily be shown explicitly by integrating (30)
over velocity.

B. W. ABRAHAM

then the integral equations for the barred quantities
Gi(v) and F,(v) are

€@ — w)F\()
~ ia6) [ dnd-b — o —r)Pi(~n) = 20);
0 — WG
~ i80) [ do — w— w)Foi(-n) = 76). 46)
The new quantities ¢, and §' are defined by
a@) = (/e
§o) = ( “3}) f v dv, 5_(1-v — ko — 1-¥,)

X 3 — 1v/D1-(8 — o' (Me(vy).  (@7)

The known solution for F,(») enables the solution
for G,(») to be found immediately

Gib) = 7)< — w)

dv, 6. (V — Vl)R(VI:w)
+“2(V)f( — () —w— )

The calculations will be very similar to those pre-
viously done as G differs from F only in the §'(»)
and €(») terms. We see from Eq. (47) that for ¢(v)
we have substituted ¢'(v).

The equation for the time derivative of the relative
energy from Eqs. (43), (44), and (45) becomes

ds, dl _
_J.t_ = —47|-23ch?1!¢)de%(”;0)

(48)

(49)

5 a dl {e—i(v—(—)lt
+ 4r'e’ce as T [dv ——'—-——-‘(V —_—
x [-—ql(V;v — )+ ql(V;O)]

o () ()
4 T 2rid R £ = r_)},
£+ — ¢-) v~ ¢

It should be noted that the new collision terms are
integrated only over the weakly unstable and weakly
stable portion of 1 space. Taking the poles in » and
defining the barred quantities as previously, we find
for Eq. (49)
ds, dl f _5(v; 0)
dt = e’ fu (U+8) 1'3 vo @ € (V)e (")

(_29_) > o l Yo + ;:]uol ook @ -1
(,,3;) b 13 } flo, 703 15 00), (50)
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where the real part of the normal collision term
integrated over the unstable and just-stable part
of 1 space has been removed from the normal collision
term. Here f(uo, vo; I; w,) is & complicated function
but for small I it is the order of (I*/w!)Ku*. To find
the order of magnitude of this term, we recall that
the limits of x4 and I are over the maximum ranges
of order ¢ and ¢, respectively, ¢ having been defined
in Eq. (26). Expanding the integral in power series
in ¢, keeping lowest-order terms, we find the max-
imum value of the last term of Eq. (50) to be
¢€K/4 (K is a constant the order of 1). Therefore
the last term of Eq. (45) may be disregarded with
respect to the first term. This is demonstrated in
the Appendix explicitly for the case in which the
first term may be expanded to give, as a first approx-
imation, the Landau term. The Landau term will
give for this model a similar contribution as found
by Dreicer,” for dynamical friction. As the ratio of
the dynamical friction term to the third term of
Eq. (50) is the order, € ® In (L/Ap) the latter may
be neglected.

Having shown that the third term of Eq. (50)
can be neglected with respect to the first term, the
first term is always negative as it is the dynamical
friction term, and noticing that the second term is
always negative, we have

ds./dt < 0. (51)

The time behavior of &; can be found from the
relationship

dér/dt = dU/dt — dg&./dt. (62)

Tt can be seen from a comparison of Egs. (37) and
(50) that dU/dt is much smaller than d&,/dt or we
shall neglect it. This can be most easily seen if
one expands the exponential exp (2vlt) in a power
series. The term of dU/dt independent explicitly of
time is much smaller than the first term of Eq. (50).
The time-independent terms can be compared term
by term. The integrand of d&r/dt is always ™'
greater than that of dU/dt. As the integrands are
positive, each term of d&y/dt is much greater than
of dU/dt. Thus

de./dt =~ —dg&./dt. (53)

From Eq. (53) we have the result that the thermal
energy of each beam is monotonically increasing.
Equation (51) and (53) are equivalent to the state-
ment that the relative velocity of each beam de-
creases and the thermal velocity increases.

Finally we relate the time behavior of the relative
energy to the time behavior of . The time derivative
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of v can be found from Eq. (19) where quantities
the order of (v/u,) have been neglected.

dy _ _1 ( &’v_ﬁ)'*&_ﬂl].
at = mom [2 1+°5) & @ (54)

From above we have that dU/dt is negligible with
respect to d&,/dt or

dy 1 ( 8l2v§) ds.
dt = meu, 1+ we / dt (55)
As d&g./dt is always negative, it follows that
dy/dt < 0. (56)

From Eq. (50) for d8&,/dt, one observes that there
is never a value of v for which d&,/dt = 0 in the
weakly unstable or weakly stable range. Thus one
can conclude that v cannot approach some asymptote
¥ = v, as dvy/dt is never zero. Therefore v continues
to decrease until it becomes negative or the system
is stable.

In conclusion, we have shown the physical re-
quirement—that the system stabilizes, the relative
energy decreases, and the thermal energy increases—
is equivalent to the mathematical requirement that
the imaginary part of the zero of the dielectric con-
stant becomes negative.

This verifies the suggestion of Balescu that the
new frictional and diffusional collision terms should
stabilize the unstable plasma by decreasing the rela-
tive velocity and increasing the velocity spread. A
variation of the model is being utilized to study
electron runaway.
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APPENDIX

The first term of Eq. (53) may be expanded to
give the Landau collision term on a first approxima-
tion under certain conditions. It is essentially the
normal collision term with the divergent portion
subtracted. We have shown that a necessary condi-
tion for the expansion of this normal term to give
the Landau term for this model is that the relaxation
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time w,'T"? be much greater than some small frac-
tion of the stability time (¥1)7".

To expand the normal collision integral in the
ring approximation for the symmetric model, we
follow the procedure used by Balescu.® The normal
collision term, C{¢) can be rewritten:

Clo) = A [ av' 3R, ~ e’ (AD
A is a constant and the tensor R,, is given by
v L[ bl 8l — V)]
R"(v,V) - 41[‘4 f dl l4 ll + l—z‘I/(l’V/l)‘z (A2)
for ¥ defined by
. 2
¥ o= (%) f dVl 6——(1_.‘! - Vl)ﬂz’/(”l)
T l
= ‘I’I + 1:‘1’2, (A3)

and ¥,, ¥, are real. If Eq. (A2) is integrated over
the direction cosine, cos 6 = g-1/¢l, then R,, sim-
plifies to give

1 25 cos P Jrcosd>
R,.s = m j; dd {sin‘b} 18124)}‘]’ (A4)

0

where

2\2 2
J=‘1‘1n|:(\I’l+L) +‘I’z:|

2 v+ v
_ _\Iﬁ -1 ( Lz\Ilz ) - nW‘I’l
v\ rerw Ty 0 WY

and n = 0;
L, 4+ |[¥* > 0,

Previously the logarithmic term of J was expanded
using the condition that L the inverse impact param-~
eter, is large compared to Ap, the Debye length.
Another equivalent condition is that I'!, the inverse
number of particles in the Debye sphere, be small.
The eritical requirement was

[¢] = [¥|/Be’c = OQ1). (A6)

From Balescu® we have that ¢, and ¢, for the Lorentz
distribution are

¥, + ¥ <0.

wlz) utz) - — Vo)2

ba = 2K2D{[(V —v0)” + )

Ut (v —v,) (v +vo) }
o = 52 {[@ o Rl [ L. GG

Of course in the limit of extremely large », both

up — 4 v,)° }
T I

3+
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¥1 and ¥, approach zero as before. By inspection

we see that ¢, and ¢, also vanish for
v =0 and (A9)

As the function ¥, vanishes only for » = 0, the
resultant restriction on the expansion is that

Vo = Ug.

(A10)

where & is some small number less than 1 to be
determined. To find the value of the logarithm for
v = 0, we note that

[uo — wo| > duo,

v =¢ X3 (Al11)
on the logarithm expanded gives
In(14+8r?* H~In8r2+ In s (A12)

To neglect the second term of Eq. (A12) with respect
to the first we must require that

8T > 7% (A13)

The constant § can be related to ¥, Eq. (22), since it
was stated earlier that all terms for which

(A14)

be excluded from integration of the normal collision
term. Comparing Eqgs. (A10) and (A14) gives

Iuo - Vo| <7

8 = F/uq. (Al5)
Substituting Eq. (A15) into Eq. (A13) gives finally
BT ) (Fus") > 1. (A16)

While u, varies with time, reaching its maximum
value at equilibrium it varies at the most for this
model by a factor of /2. Setting u, equal w\p,
we find

8(IPw,) ™' > (FKp) . (A17)

The term (Iw,)”! is the relaxation time of the
plasma. The stability time is less obvious in its
definition, that the time of the largest time-depend-
ent component to decay shall be called the stability
time:

Kopy)7" = t.. (A18)
Then Eq. (A16) can be rewritten
8t. >> é,. (A19)

Thus the expansion of the normal collision integral
for the unstable case, giving the Landau approxima-
tion as the first term, is valid if the relaxation and
stability time obey the above inequality.
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For potentials V(z) holomorphic in Re z > 0 and bounded by

V(2)] < K/lz|r

p <2 for
[V(2)] < K |z|77ve™#e Re 2z for

l2] <1,
2l 21, v >T7/4

we show that the double spectral “function” p(s, t) is a continuous function of sand tins > 0,¢ > 0,
and we obtain an upper bound for it. This upper bound shows clearly that the double integral of the
Mandelstam representation in fact exists and defines an analytic function of s and ¢ in two cut planes,
We indicate how to generalize these results to the case when p(s, £) is no longer a function but a distri-

bution.

1. INTRODUCTION

HE Mandelstam representation for the amph-

tude in potential scattering has been written
down by Blankenbecler, Goldberger, Khuri, and
Treiman':

fo, 1) = falt) + 3 L0

s+ s
e f p(S y t,)
T f ds’ | dt N = D —9)
= g,,(s') s’
+ ;, k!.[ s —s (1.1)
Here we take t = —2s(1 — cos 6); s = energy,

cos 0 = scattering angle. In fact what one knows
is that one can write from Khuri’s work

f(Syt)=fB(t)+‘:F(t) lf ag 16

i=0 8 8
(1.2)
and from Regge’s work
n+l
4 o T}
Im f(s', 1) = f tlﬂ+l 9 (s, 1)
k=n tk
+ Ep g:.(s"), for & real > 0. (1.3)
k=0 .

The problem in which we are interested here is to
show that the repeated integrals

1 f“’ ds’ {t__‘_ ® 4t p(s’, t)

wmdo 8§ —sl\la Jo "0 — 1)
converge and are in fact a double integral. We
restrict ourselves in this paper to such potentials
that give rise to a continuous p(s, ¢). In this simple
case, we just need to put a convenient upper bound

! R. Blankenbecler, M. L. Goldberger, N. N. Khuri, and
S. B. Treiman, Ann, Phys (N. Y.) 10, 62 (1960).

on p(s, t) todemonstrate the proposition. We in-
dicate a general method for the case where p(s, t)
is a distribution. We do not consider the con-
vergence of the one-dimensional integrals, (see, for
instance, Ref. 2).

2. AN UPPER BOUND FOR THE AMPLITUDE
f(v, k)

We consider a potential V(2) holomorphic in
Re z > 0 and bounded by

V@) < K/lzl’}
2] <1

[V@)| < Ke ™ /||
le] > 1

p <2, @.1)

} v>0, p>0. (2.2)

It has been shown in Ref. 3 that, for [»| > 1,0 <
arg v < 7/2, — (#/2 — argv) < argk < + /2.
The amplitude f(», k) = ¢**“"* gin 8(», k) is given by

fo, k) = —AQ, k)/[1 + iB@, k)] 2.3)
with
|A@, k)|, |B@, k)| < %le -1}, @49

with C a purely numerical constant (C < 23). I(y, k)
is given by the integral

t dt ( >
l [kl Jo |1 — 2)

where T is a contour depending only on arg », made
of two pieces: a rectilinear part from 0 to 1 and a
curve IV (arg ») shown in Fig. 1.

We need first to study I(», k). We suppose k
real positive but most of the results extend to

2C2I(v.k)

2
V

I, k) = ) 2.5)

2 A. Martin, Instltute for Advanced Study, Princeton,
preprint (1964), I\})
3 D. Bessis, uovo Cimento 33, 797 (1964).
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Ret

T'(Arg™)

Fi16. 1. The path of integration T.

—(x/2 — arg v) < arg k < + x/2. We consider
two cases.

A. The Case where |v/k| > 1

We put
1 |»® [ tdt {
L, k) = P i L At of V(L) ;
(2.6)
1 tdi
L, k) = ——I- ]% f 1'——7-)‘; Vi
We have
_Igzz{l_cpf”h‘ tdt 1
Lo, k) < ARL v Jo a- tz?;;
k v 1 tdt e"’l&o(Re v/k)"
+ —V ‘/;Ic/vl a- '52)I t” } @7

Putting [k/»| = sin @, 0 < o < + 7/2 and recalling
that 2u/r < sinu < ufor 0 < u < + 7/2, we
see that

flk/vl tdt 1 _ fa du
o A= ) sinw
e 1 |k
< ’—r> — = 2.
—(2 g—p|y o fore<
Putting 8 = arg v/k, cos § > 0, we have

1 tdt e—uo(Re v/k) ¢
‘[uc/vl 1 - tzﬁ A

/2 du Sin u
= ————— eXpP | — o COS =
« (sinw)"™ S0«

BESSIS

&

< ( ) /2 du ( 2 cos@ )
> T Mo T U
smau m sSln o

<G () [

- cos 0 cosG

< (1_r> (sm a)2 YtTodt

— \2/ \cos 4 me A
If 0 < v < 2, this last integral is smaller than

*e dt —2uot/ T (ﬂ' )Z_T
— e = | '@ — v); .
[ 5 o) re-; e

if ¥ = 2, this last integral is smaller than

+a
f Ed_te—zuot/r < “’" P
cos 8 t 2/“‘0

if ¥ > 2, this last integral is smaller than

** di_ (cos §)"77
cos 8 ty—l B )
And so,

2 -
for) < v < 2,

I(vk)<ll{§

gr@—w 1 }
57T (cos 6)°"7)’

o

* cos §/2 sin a dt
—2uet/ T

(L]

t‘Y-l

e—?uol/w, ¥ > 0.

— In cos 6; 2.9

(2.10)

fory > 2,
Il(”y k)

B )
Slvl{2 -, T\ 73S

We have to obtain now an upper bound for
I,(v, k). We write

K V2—7 tl“Y —uoRe vt
H frr“u‘_iu—ﬁl &R g,

I 2(1’7 k) < I” J
Taking into account |»/k| > 1 and that it has been
shown in Appendix II of Ref. 3 that on I (arg »)
we have |t} > 1and 0 < arg »(t — 1) < % arg».
We get, k being real here for simplicity,

Lo, k) < ,K' o “““R”’kf —“‘—71 — 7 :Ztyl
X exp {—uo 3( [t — 1| [arg »(t — 1)]}

K
bl

£2~ -uoRev/kf ldtl —Molt 1| cos */8
k o |1—t|¥ '

o °
vy > 0.

<

(2.10)
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This last integral is always convergent, and being
a continuous function of arg » varying over the
finite interval (0, x/2), it has an upper bound
Ko(uo) for v > 0, and so

L, k) < KKo(uo)/ | l”/klz-.’ eRe
fy22

L@, k) < KKo(mo)/ |;
ifo <y <2

LG, k) < [KKo(wo)/ua " Iv[11/(cos 6)*".
Summing up all results we find, calling C(V) a con-
stant depending only on potential properties,
I, k) < [C(V)/Ip[11/(cos 6)*77,

for 0 <7y <2; (2.11)

< C(V)/ v, for v> 2;- (2.12)
< (K/pDIC(V) + (x/2)* |In cos 6]],
for vy = 2. (2.13)

B. The Case where |v/k| < 1

This case is harmless and following the same
method, we show that

I, k) < [CV)/P[l/k] < COV)/Pl. (2.14)

Finally, we have proved that the Regge poles
for k real > 0 are confined to the domain

(I) for 0 < v < 2 see Fig. 2 for the shape of
the domain. '

Im v
s
L
pofes
F
1 >
I Re
O< ¥
€ <2
osh<r

Fi1a. 2. Localization of Regge poles.

N
Imv

poles

N

ot

Rew

o w K
N ANV
e @

F1a. 3. Localization of Regge poles.

(II) for v > 2 see Fig. 3 for the shape of the
domain.

This results from the fact that there cannot be poles
when

I, k) < In3/C*.

The point », (of Fig. 2 and Fig. 3) being independent
of » and k but depending on potential properties.

We want now to find an upper bound for f(», k)
on a contour C defined as follows (see Fig. 4).

*C is made of the line (¢ — ¢ «, P*), the arc of
circle P*L,P of center O, radius L, and the line
(P, e + i=). We impose 0 < € < % and L, is an
integer. The line F containing all Regge poles must
be completely inside the domain limited by the
imaginary » axis and C as shown in Fig. 4. It is
always possible to choose a finite L, for the potential
we are dealing with, as results from the preceding
study. We suppose, as can always be done, L, > 1.
On (P, e + ¢ ©) we have

I, k) < C(V)/ |
I, k) < [CV)/E770/ P77

for v > 2;
for 0 <y <2;

K )’ € _
I(, k) < ¥ I:C'(V) + (5) log -IV—IH, for v = 2,
and because f(v, k) = —A(,k) /[1 + iB(», k)] and
|B(», k)| < 1 on C, we see that
[, k)| < C(V)/ v

for vy > 2; (2.15)
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lfo, k)| < [C(V)/E771(1/[|"™H Through unitarity S(V:ik) X S*(* k*) = 1 we
) see that these bounds hold on (P*, ¢ — ¢ «). On the

for 0 <v <2 (2.16) arc of the circle, we need for |A(v, k)| a better

bound than I(», k) at least for ¥ — 40 in order

2
fo, k)| < El [C(V) + (g) log [—e] } to find the well known behavior k*®’. To do this
b g we need to come back to the equations of Part I11
for v = 2. (2.17) of Ref. 3, in which it has been shown that
:’mg 1 E#(‘v@

Contour ¢

-1
F1c. 4. Path of Integration.
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2 . v 2
(A(v k)l 20 I(v ., k) _’;
e —2Re r{a—tanh ) E 1 ) da
. {j; ¢ V(k cosh a/ | cosh® «
4
+ e T2 7 () 'dt'} @18)

We shall suppose [v/k| > 1, because on the arc
of the circle |»| is fixed and equal to L,, and we
are only interested in £ < L,; for £ > L, we use
the previous bound.

So we get (putting |v/k| = cosh B) that

® —~2Re #{a—tanh a) 1 1 ) da _ 1
/; ¢ V(k cosh «

] =
cosh” @ (cosh 8)”
B
X f e—2Re »(a—tanh a)(cosha)'y~2e—uoRe(v/k) (1/tanh o) da
0

1 ‘/d-w e—2Re v(a—tanh a)(cosh a)p—z da.
(cosh 8)° 78
We have
1 +

f e-—2 Re v(a—tanh a)(cosh a)p—2 da

(cosh B) Js
22—p e2 Ri v k 2 Re r+2
- 2—-0p v

where Re » > 0 and p < 2,

and

B
J2=f e‘Z Re r{a—tanh a)(cosha)‘y—ze—no Re (»/k) (1/c08h a) d(!
0

8
SQeZRerf e

0

—a(2 Re »+2—y)—po(Re v/[r]{) eﬁ—a da.

Putting ¢ = 8 — «, we get

J < 2 62 Re v—8(2 Re v +2—¥)
2 =

8
Xf exp[t(2Rev+2_,y) F;of?elv ,] it

2 Re v+2—7

< 2exp (2Rev+|2 Rev+2—v| log2) [k
-_ (%#0 Re V/[V,)z Re p+2—7

+ o

X e—uu(2 Re vy+2—vy)—1 du
(Bo/2) Re »/|»|

Recalling that ¢ < Re v < L, we see that

k 2 Ra v+2—v

J: S C(V, ¢ Lo) - (2.19)

We consider now the integral

[

14 ; t>| |dt|
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which is equal to

k —ua Revt/kf ,dtl —Ma Re [v{t—1))/k
’

P t] M*

which is smaller than

Ko(uo) [k/v|" e ®° "%, (2.20)
Collecting results, we obtain
A, k)| < (C(V, /¢]) |k/r|* " (2.21)

and the amplitude f(», k) is, on the arc of the circle,
and for &k < 1, smaller than
i, B)] < C(V, k""", k<L

With all these bounds, we can now obtain a nice
bound for the double spectral function, at least for
¥ > 4. But we show that with much labor we
can explore the structure of p(s, ) evenfor0 < y < {

3. THE DOUBLE SPECTRAL FUNCTION

For k real positive we can write

f(k; COS 0) = __.il._. M

% J, cos m P,_3(—cos 8w dv

=Lg

zm Z @l + Dfi(k)P.(cos 6)  (3.1)

with f.(k) = f(! + %, k). This defines an analytic
function of cos 6 in the cos 6 plane cut along (1 + «).

Recalling s = &k, £ = —2s(1 — cos 6), we see
that

S (M= PeuB (4 ),
1 i=Lo—1

COS v
+ % ?: @l+ 1) Im sl(k)Pz(l + 5%) (3.2)

Taking into account unitarity, that is

—i[f(”’ k) - f*(V*: k)] = 2f(V’ k)f*(l/*, k)y

we see that
t
( 1—- 2—8\)1' dv

+ % 3 @4 1) Im f(k)P,(l + 5‘8-)

i=0

(3.3)

2iImf(s,t)=%fc%’f_r_@P

(3.4)

This defines a funetion which is holomorphie in the
¢ plane outside the cut (0, + « ). From the previous
study, we see that, if v > I,

fe, B < C/(b[* + m),

|Im v} — o,

n>0 (3.5
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and using the bound
|P,_s+0(cosh a)| < 3 cosh ae/(Asinh )} for A > 1
—3 <e< +4, a >0, (3.6)

we see that the integral converges absolutely on
both sides of the ¢ cut.
The double spectral function is by definition

p(S, t) = (1/21:){1111 f(S, t+ 'Le) ~ Im f(sa t— ’L.(:)},
3.7

and we find, all integrals being absolutely convergent,

—_ t
oo, 0 = 2 [ o, by, B2 (145 ) &, ©8)
where s > 0, ¢t > 0.

4. UPPER BOUND FOR s, 1)

It is easy now to obtain for v > ¥ a nice upper
bound for p(s, t), from which the actual existence
of the Mandelstam representation follows without
difficulties. From the preceding study we see that
the contribution to the integral giving p(s, t), coming
from (P, ¢ 4 7 «) and (P*, e—¢ ») is, in modulus,

less than
p'(s, ) = 20V, e)f —;m(l + >}
Cl, ¢ e)

bl
In the case ¥ > 1, all the operations we have made
in Ref. 3 are valid and even more the integral

giving p(s, t) is absolutely convergent and so defines
a continuous function of s and ¢. This is so because

[P -3+ an{cosh &)] < 3 cosh (xe)/(A sinh o)t
for A>1, —i<e<i a20.

if |fe, k)| < 4.1

4.2)
So the previous integral is smaller than

) cosh ex * dt
“ ksinh a)f J, N2t

1 + t/2s, the integral converges

v,

Putting cosh a =

if § > 4, that is, from the preceding study, if v > {.
So we have
h c,
P'(s, 1) < C(V, ¢ T?Sih*:); < T (+ t/% cosh e
2C(V, ¢ (1 4 t/29)°

< m (cosh o) < C(V, ¢ m
Taking ¢ = 1, we get

p'(s, 1) < C(V)/stt. (4.3)

D. BESSIS

We are left with the integral on the are of the circle.
This integral is in modulus less than

p(s, t) < —;f

S C(V) eﬂ(zn-l)/s
taking into account {P,(cosh )| < e
< lC(W)/$0 + /287 (4.4)

this bound is convenient for s > 1. For s < 1,
instead of taking the bound [f(», k)| < C/(Lo)",
we take the more-refined bound obtained previ-
ously |f(», k)| < C(V)k*®’, and get

le’(s, t)

———;—-—V AT cos
< Ci ).[,, §5 %" Py, cong-t+ize sins(c0osha)| do

/2—¢y

25 = [Py, .-y (cosh )| do

aRer

x/2— €y
S Cgv) e—u/Z f

0

e"°** d¢, H = Lo(a+ log s*).

But
H<Llog[l+t/2+ @+ /4 for s <1,

and so

pls, 1) < C(V) 1+ t/2 + @+ /90, s> 1.
4.5)
Adding up results we get

lols, §] < C(V){g%; + L+ —Z—ts)i} 521

< e(M{1/stt + Q/sHEe + H*) s < 1.
(4.6)

So in all cases
lo(s, ) < C(ML/s*E + @ + 0 /s']. .7

5. THE MANDELSTAM REPRESENTATION

We can now write for Im f(s, £) the dispersion
relation

gor! f“' gy -2 t)
L P A A

l=L, tl
+ 2 o),
= U
From the result of Khuri, we know that

$ L0 +1f gy 16 1)

s+ s, s’ —~s

Im f(s', ) =

¢’ real > 0. 5.1

f(s) t) = fB(t) +

Ims # 0, (5.2)
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which is valid for real ¢ > ~4u2. Introducing the
expression for Im f(s’, ), we see that

1o, B = 1a9) + 3 T

= s+ s,
Ay { [ ar 2. 0) }
t ) = @ A ()

l=L @
v i ds’
+ 2%

7
1=0 § — 8

7:(s"). (5.3)
Because of the bound obtained for p(s, f) we see
that the repeated integral is in fact a double integral
and that the analytic continuation in £ can be made
because f5(t) is analytic in £ outside the cut p) + «
and T,(f) are polynomials in ¢. For the convergence
of the simple integrals see Martin (Ref. 2).

6. EXTENSION OF THE METHOD

To extend the method to the case v < { we need
first a refinement of the method giving an upper
bound on f(», k). This refinement consists essentially
in extracting the Born approximation, and using
the second iteration for the Volterra form of the
Schrodinger radial equation. In that case, the kernel
does not change but we improve the behavior of
the inhomogeneous terms for » — ¢ =, This operation
can be repeated if necessary, until the rest of the
amplitude behaves better than C/(J»] + 7) for
Im »] — . Secondly, generally speaking, p(s, ¢)
will be a distribution; what kind of distributions
shall we incounter in p(s, £)? Going back to

os, ) = -% fc 16, DF*6*, k)P,_,(l + 5‘;)» d,
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and taking into account that*
ol Lo b= 3)
Py.a(cosh a) ~ (1r)\ sinh a( [COS A =4
1 T 1
~ 3 coth a cos (M + Z) + O()\z), 6.1)

we can expect to find a finite number of distributions
in p(s, t). These distributions can be extracted from
p(s, t), the rest being continuous. It would be in-
teresting to actually do this extraction and evaluate
the “residues” of the distributions. The Mandelstam
representation will then follow.

7. CONCLUSION

We have shown that, for potentials V(z) holo-
morphic in Re z > 0, less singular than 1/2° at
the origin, decreasing exponentially on any ray of
the right-hand plane (except on the imaginary axis,
where they must decrease faster than 1/[2]"; v > 1),
the double spectral function is bounded by

ote, 01 < )| o+ EEDT] o

8

s >0,
t>0,

where C(V) depends only on potential properties as
does L,, and both are finite. This permitted us to
show that the repeated integral of the Mandelstam
representation actually exists and that it is in fact
a double integral. Indications were also given to
study the case v < Z.

ACKNOWLEDGMENT

It is a pleasure to thank Professor Froissart for
many helpful discussions.

¢ L. Robin, Fonctions sphériques de Legendre et fonctions
sphéroidales (Gauthier-Villars, Paris, 1959), Vol. III, p. 157.



JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 6, NUMBER 4 APRIL 1965

Uniqueness of Steady-State Solutions to the Fokker—Planck Equation*

A. H. Gray, J=.
School of Engineering, University of California at Santa Barbara,
Santa Barbara, California
(Received 19 May 1964)

The uniqueness of steady-state probability densities in certain continuous Markov processes is
proven when the Fokker—Planck or Kolmogorov equation satisfied by the transition probability is
of a variety called “steady.” The tendency of other probability densities to approach such steady-state

densities is formally demonstrated.

INTRODUCTION

INCE the first treatments of Brownian motion

as an example of a continuous Markov process,

the applications of Markov processes in physical

situations have extended over a wide range which

includes such extremes as barometric pressure dis-
tributions and structural responses to earthquakes.

The analysis of such problems usually leads to
a partial differential equation describing a ‘‘transi-
tion” probability density, which is called a Fokker-
Planck or Kolmogorov equation. Too often such
equations are too complex to solve. Sometimes a
time-independent solution can be found, and it is
called a steady-state probability density. It is then
often tacitly assumed that such a steady-state prob-
ability density is unique and further that all solutions
to the equation must approach this as time goes to
infinity. Such assumptions are generally based on
physical reasoning. Wang and Uhlenbeck' refer to
a uniqueness proof for the steady-state probability
density in a barometric distribution which was com-
municated to them by M. Dresden, but this proof
does not appear to have been published.

It is proved in this paper that a certain class
of Fokker-Planck or Kolmogorov equations do in-
deed have unique steady-state solutions (if they
have any) and it is formally demonstrated that all
solutions must ‘“‘tend” towards the steady-state
solutions.

THE FOKKER-PLANCK EQUATION

Let summation convention be implied unless
otherwise specified, so that repeated subscripts imply
a summation over all values of the subsecript. The
Fokker-Planck operator will be denoted by the

* This paper is based on a portion of a thesis submitted
to the California Institute of Technology in partial fulfillment
of the requirements for the degree of Doctor of Philosophy
in Engineering Science.

1 M. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys. 17,
323 (1945). Reprinted in Selected Papers on Noise and Sto-
chastic Processes, edited by N. Wax (Dover Publications,
Inc., New York, 1954).

symbol F, where

F(f) = —a(Ad)/dyx + 38" (Dui)/Oys 0y, (1)

and the A4, and D,; are each functions of y (that is,
they are functions of the variables y,, ys, * -+ , yn)-
The D,; are elements of a positive-definite matrix
so that the quadratic expression D,.x.x, is non-
negative. A function P of y and ¢ will be said to
satisfy the Fokker-Planck equation if

aP/3t = F(P). 2)

For simplicity, integrals denoted as single integrals
in the variable y will be used as a shorthand notation
for the N-dimensional improper Riemann integrals
over the variables y,, ¥s, - -+ , y~. That is,

pay=[ o [ [ ranaydge @

As in all uniqueness proofs, there are certain re-
strictions that must be placed on the class of func-
tions involved. To avoid continual repetition of these
requirements in the pages to follow, these restrictions
will be combined in a single definition. For lack of
a better name, a function which satisfies these re-
strictions will be called “well behaved.”

Definition 1. A probability density P is well behaved
if and only if each of the following requirements
are satisfied®:

(i) oP/at = F(P) forall ¢t > 0 and all y.

(i) P > 0 for all¢ > 0 and all finite y.

(iii) the multiple improper Riemann integrals over
all y of each of the following functions are each
absolutely and uniformly convergent for ¢ in every
positive closed interval: P, 4,0P/dyx, Dw:d’P/3y.9ys,
P3AL/dys, Paszi/ayiayln (8P /8y:)(8Ds:/dy:), and
(Dw:/P)(8P/3y,)(0P/dy,). No summation conven-
tion is to be implied in these functions.

(iv) At ¢t = 0, [ P dy equals one.

¢ Slight modifications are necessary in the theorems to

follow when one is dealing with problems for which P is
identically zero in portions of the N-dimensional phase space.

644



STEADY-STATE SOLUTIONS OF FOKKER-PLANCK EQUATION

(v) 9P/dt is uniformly continuous in y and ¢ for
¢ in every positive closed interval, and each y, in
every closed interval.

(vi) The limit as y, goes to plus or minus infinity
of each of the following functions (summation con-
vention is not implied here) exists and is zero: A,P,
D,;0P/3y., and PoD,,/dy;.

It may be noted that well-behaved probability
densities are not restricted to the so-called transition
probabilities. In general the transistion probability
is a well-behaved probability density with impulsive
initial conditions.

Two more definitions will be useful. These are
given here.

Definition 2. A steady Fokker-Planck equation is
one for which the coefficients 4, and D,; satisfy
the following requirements:

(i) The N by N matrix made up of the elements
D,; contains an m by m strictly positive-definite
matrix (where 1 < m < N) such that the quadratic
expression D,.z;x, is nonnegative, and can be zero
if and only if each x,, for k< m, is identically zero.

(i) If m < N, then D;; = Ofork > morz > m,
and further, the set of partial differential equations

dg/dy, =0 for k=m+1,m+2,--- N,
dg/dt = — A, 3g/dys,
has as its only solution g equal to a constant.

Definition 3. A steady-state probability density is
any well-behaved probability density P, such that
dP/at = 0.

A MEASURE OF THE DIFFERENCE OF
WELL-BEHAVED PROBABILITIES

Let P, and P, be two well-behaved probabilities.

A measure of their difference will be denoted by M (¢),
where
P, — Py’
PEp W ®
The integral defining M(¢) obviously exists, as
(P, — P,)/(P, + P,) must be a bounded con-
tinuous function. Thus, as P, and P, are each
integrable, the products P,(P, — P,)/(P, + P,)
and P,(P, — P,)/(P, 4 P.) must each be integrable,
and the difference of the integrals is simply M ().

From the definition of M (¢), it is obvious that

M@) 20, (5)

with equality holding if and only if P, = P,. It will
be shown here that under certain conditions M (¢)

M(l) =
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is a strietly monotonically decreasing function of
time.

Theorem 1. Let P, and P, be well-behaved prob-
ability densities, and define M (f) according to Eq.
(4). Then the time derivative of M (f) exists, is con-
tinuous, and

dMt)/dt < 0. (6)

Corollary. If the Fokker—Planck equation is
steady, then equality can hold in Eq. (6) if and
only if P, = P..

The proof of this theorem and its corollary can
best be demonstrated by the use of some inter-
mediate lemmas. The first of these is necessary if
one is to even consider P, and P, as probability
densities.

Lemma 1. If P is a well-behaved probability
density, then

dey= 1 forall ¢>0.

The proof follows from Definition 1 for a well-be-
haved probability density. From items (i) and (iii)
of Definition 1 it is seen that dP/dt is integrable.
From item (iii) it also follows that the order of
integration is immaterial, so that

P d
| o (4P) dy

1 9*
+3 f P (Dy.P) dy

may be evaluated by integrating each term with
respect to y, first. But from item (vi) of Definition 1,
each term is zero so that one has f oP/at dy = 0.
Further, from the uniform continuity of item (v),
one finds that

if - [9,, _
T, Pdy = atdy—O.

Hence as the integral [ P dy has a zero time deriva-
tive and is one at time zero, it must be one for all
time.

Lemma 2. With M () as defined by Eq. (4), one
has that

The proof of this follows by noting first that the
integrand of Eq. (7) is equal to

[ 2P, ]a_ﬂ_[ P, ][QP_ 95_1].
P+ P, o P+ P, 9t ot
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Thus, by noting that P,/(P, + P,) is a bounded
continuous function, and as in the proof of Lemma 1,
dP,/ot and dP,/dt are each integrable and uniformly
continuous, one has that the integral of Eq. (7)
exists (and its integrand is uniformly continuous).
As M(t) is the integral of (P, — P,)*/(P, + P,) and

P, — P))* _ 4P}
Pyp, DTt R
one can use Lemma 1 to show that
. P?
W - 248 [ 4
@& + 4 P, + P, dy

By differentiating this expression, Eq. (7) of Lemma
2 follows.

Lemma 3. If P, and P, are well-behaved prob-
ability densities and the Fokker—Planck operator F
is as defined by Eq. (1), then

f FI:Px I_;_?P;' dy = 0.

This lemma, can be proved in & manner similar to
the preceding lémmas. First the definition of F given
by Eq. (1) must be used to expand F[P}/(P, + P.)]
to give a sum of terms involving P,, P,, their deriva-
tives, and the ratios P,/(P, + P,) and P,/(P, + P,).
Each of these ratios is bounded and continuous. By
using this fact along with the existence of the in-
tegrals implied by item (iii) of Definition 1, one can
show that the integral of F[P:/(P, 4+ P,)] does
indeed exist. As in the proof of Lemma 1, the in-
tegrals may be evaluated in any order, and by
integrating each one with respect to y, first, the
boundedness of the ratios P,/(P, -+ P,) and
P,/(P, + P,) coupled with item (vi) of Definition 1
leads to the fact that each of these integrals is zero.
Thus the integral of F[P}/(P, + P,)] is zero.

Lemma 4. If P, and P, are well-behaved probability
densities and the Fokker-Planck operator F is as
defined by Eq. (1), then

2lrtz) - i)
it LP, + P, P, + P,

d P, 9 Py .
= —D(P, + Py a_yk [m] Ay |:P1 +P2]

The proof of this lemma is algebraic; all that need
be done is that the indicated derivatives be taken
and the Fokker—Planck equation be applied for P,
and P,. Lemma 4 will follow directly.

The proof of the theorem now follows. For sim-
plicity, let  be defined by the ratio

A. H. GRAY, JR.

z =P/JP, + P,). ®
Then, from Lemma 2, one has that
dM (1)

3
a —* f 5¢ #P) dy.

But from Lemmas 3 and 4, one has that

3 dr oz
[Gepran= - D+ Py E 2y,
so that
aM() / dz oz

As the D, are elements of a positive-definite matrix,
the integral of Eq. (9) must be nonnegative, so that

dM(t)/dt < 0.

The continuity of dM(¢)/dt follows from the proof
of Lemma 2.

To prove the corollary of Theorem 1, one assumes
that the Fokker—Planck equation is steady. As the
D, are positive-definite, and P, and P, are positive,
the integrand in equation (9) must be positive. Thus
dM(t)/dt can be zero if and only if the integrand
is identicaly zero,

iz dx
D..(P, + P, e 0.

But as P, and P, themselves are positive, one

can use item (i) of Definition 2 to show that from

this, dM (¢)/dt can be zero if and only if
ox/oyy =0 for k=1,2,---,m. (10)

But, by using the fact that z is a ratio of two solu-
tions to the Fokker-Planck equation along with Eq.

(10), one has
ax/at = _‘Ak ax/ay,,. (11)

From Definition 2, it then follows that dM (¢)/dt
can be zero if and only if x is a constant. If it is a
constant then .

[2@+Pyay =2 [ @ +Pyay =2,

from Lemma 1. But one also has

fx(P1+P2)dy=fPldy=l,

so that the value of this constant must be 3, which
implies that P, = P,. Thus, dM(¢)/dt can be zero
if and only if P, and P, are equal.
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UNIQUENESS

Let P, and P, each be well-behaved solutions to
a Fokker-Planck equation, and as in Eq. (4), define
M(t). As pointed out earlier, M () can be zero if
and only if P, = P,, and from Theorem 1, M(¢)
cannot increase. Thus if P, and P, are equal at
some initial time, M (¢) will be zero at that and all
subsequent times. Thus P, = P, for all time follow-
ing the initial time. This simply demonstrates the
fact that well-behaved solutions to a Fokker—Planck
equation, which satisfy a given set of initial condi-
tions, are unique. This is not very profound, and
of greater interest is uniqueness of the steady-state
solutions,

Theorem 2. There is at most one steady-state
solution to the steady Fokker-Planck equation.

The proof of this follows if one assumes that P, and
P, are each steady-state solutions, so that their
time derivatives are zero. Then from the definition
of M(t), one has dM(t)/dt = 0. However, if the
equation is steady, from the corollary to Theorem 1,
this implies that P, = P,.

LARGE TIME BEHAVIOR

Let the Fokker—Planck equation be a steady equa-
tion, and let P, and P, be well-behaved probability
densities. Then from Theorem 1 and its corollary
one has that

M@ 2>0 with equality only for P, = P,,
dM (t)/dt < 0 with equality only for P, = P,.

(12)
(13)

As M) is a decreasing function, bounded below,
it must have a limit. Further as its derivative is
negative and continuous, it too must have a limit,
and this limit is zero. Thus there will be some number
L, larger than or equal to 0, such that

lim [M(2)] =

lim [dM(2)/dt] = (14)
t—®

To form further conclusions, one must leave math-
ematical rigor behind. Formally, from Eqs. (13) and
(14), one would suspect that as { — «, P; would
in some manner approach P, for dM(f)/dt cannot
be zero unless P, = P,. Rigorously one cannot
conclude such a thing without some sort of condition
bounding M (¢) by some function of its derivative.
However, until it is proven at a later date, one
must be satisfied with the formal result that well-
behaved solutions to a steady Fokker—Planck equa-
tion behave asymptotically the same,
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Thus, if there exists a known steady-state solution,
by letting it equal P,, one can formally demonstrate
that all well-behaved probability densities approach
it as ¢ goes to infinity.

Rigorously, all that can be concluded is that the
function M (t) is a decreasing funection of time, and
has a limit as ¢ goes to infinity. Thus, in some sense
P, and P, will tend towards each other.

ADDITIONAL COMMENT

Though it was not needed here for this, it might
be of use for some purposes to use other definitions
of M (). It can be shown® that if f(z) is a function
of  with a positive second derivative, the constants
a and b are chosen so that 0 < ¢ < b < 1, and P,
and P, are defined by

P, = aP, + (1 — @)P,,
P, = bP, + (1 — bP,,

then an M (¢) could be defined by the integral

u(y = [Py ’i) dy

In this case then, for a steady Fokker—Planck
equation,

M@ = (1)
and
dM(t)/dt < 0,

with equality holding in both cases. if and only if
P 1 = P 26

SUMMARY

It has been demonstrated that well-behaved prob-
ability densities (according to Definition 1)—which
satisfy a given Fokker-Planck equation and initial
conditions—are unique. Further, when this Fokker—
Planck equation is steady (Definition 2) there can
be at most one steady-state solution. Thus steady-
state solutions are unique for the class of steady
Fokker-Planck equations.

It has also been formally demonstrated that in
the case of a steady Fokker-Planck equation, solu-
tions tend towards each other asymptotically.

The theorems developed here are for the case where
no portion of phase space is excluded. In the case
where the probability of lying in some N-dimen-
sional volume might be zero, certain modifications
must be made, which are not discussed here.

*A. H. Gray, Jr, "Stablhty and Related Problems in
Randomly Excited Systems Doctoral thesis, Ca.hforma.

Institute of Technology (1964), pp. 1-20.
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The vertex function of an s-wave bound state in potential theory is discussed in terms of a non-
relativistic Bethe-Salpeter formalism. It is shown that the Born series defining the off-shell amplitude,
T'(k% P,), has the property that T'(k?, k2/m) = To/D(k?, \), where D(k? \) is the Jost function for
potential strength A, and where the bare ( T') and physical ( T.) couplings are related by T's = TI'.Zy,
with Z,, the vertex renormalization constant equal to D(—e?, ). The particular proof presented
derives from a detailed comparison in momentum space of alternative, but equivalent, coordinate
space definitions of the Jost function originating with Jost and Pais.

I. INTRODUCTION

E have lately employed Bethe—Salpeter meth-

ods in constructing ““a field theory of potential
scattering,”’ as it were, our purpose being to show
explicitly how various aspects of the eigenvalue
problem for bound states in potential theory may be
characterized by assertions as to the vanishing of
bound-state vertex and wavefunction renormaliza-
tion constants. (It is perhaps almost unnecessary to
remark here that the utility of discussing the eigen-
value problem from this point of view has been the
subject of a number of communications® in recent
times.) In this note we derive, rather than infer,’
a property of the vertex function of a bound state in
potential theory, which seems useful in justifying
the formal manipulation of certain divergent expan-
sions one encounters there. At the same time this
derivation implies an alternative proof of a result ob-
tained by Bertocchi ef al.® in their recent discussion
of vertex renormalization in the potential theory
domain.

In Sec. IT we introduce the nonrelativistic vertex
function T'(k, p) of an s-wave bound state* via a
Bethe—Salpeter formalism.' This device enables us
to associate readily the successive terms of T'(k, p)
in its perturbation expansion® with the corresponding
simply-structured Feynman graphs. In Sec. III we
prove the useful property of the vertex function,

* Work supported by the U. 8. Atomic Energy Com-
mission. )

1 R. Rockmore, Ann. Phys. (N. Y.) (to be published).

2 M. Cini, CERN report 7508/Th 385; A. Salam, Nuovo
Cimento 25, 224 (1962); 8. Weinberg, Phys. Rev. 130, 776
(1963); A. Bastai, L. Bertocchi, 8. Fubini, G. Furlan, and
M. Tonin, Nuovo Cimento 30, 512 (1963); R. Rockmore,
Phys. Rev. 132, 878 (1963). ) .

3 1., Bertocchi, M. McMillan, E. Predazzi, and M. Tonin,
Nuovo Cimento 31, 1352 (1964). ]

4 The extension of this discussion to other values of I is
straightforward. L ]

§ We refer to an expansion in powers of the potential

strength A,

I'(K*, po), namely that

T(k*, k*/m) = To/ D&, N), ()

where D(k®, \) is the Jost function for potential
strength A, and where the bare (T',) and physieal (T'.)
couplings are related by

T, = Pch(_a2y )‘); (2)

with Z,, the vertex renormalization constant, equal
to D(—a®, \). The particular proof presented derives
from a detailed comparison in momentum space of
alternative, but equivalent, coordinate space defini-
tions of the Jost function originating with Jost and
Pais.’

II. BETHE-SALPETER FORMULATION OF
VERTEX EQUATION

The bound-state vertex I'(z; y, 2)=T(z—y, x—2)
satisfies the inhomogeneous integral equation

I(z; y, 2)
=Ty 8(x — y) 6(x — 2) + ffff dy’ d'% d'y’’ d%2"’

X T(x;y",2" ) Koy, y' ) K& ,2" )Gy ,2" ;y,2), (3)

where, to recapitulate briefly,! the kernel function
Koy, y'') is given by

d4k eik(v‘—ﬂ")

Koy, y"") = —i (27‘_)4 ko — k2/2m + de’ @
and
d'qgd'q’ d'P
G(xy, Ta; T3, Ty) = —-f —q@f)s—-—G(q, q'; P)
X exp iP(x‘ "2’_ T _ L '; x‘) exp (12> — 1q'Za);

®)
¢ R. Jost and A. Pais, Phys. Rev. 82, 840 (1952).
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VERTEX FUNCTION

moreover, we restrict ourselves to the Yukawa
kernel, so that

G(g, ¢'; P) = —iN4r")[(@ — ¢)* + &) (6)

In momentum space, one finds, quite straight-
forwardly, the analogous integral equation

P(k, P) = Fo
+ f &% Tk’ P)[(lp +k’> - + ze]
» 2 o 0

X [(3Po — ki) — (P — K')’/2m + ie] "G, k; P),
)

GP + k)’
2m

where I'(k, P) is defined by

/:[ d:’; d)P s[Pz—(§P+k)u—(§P~k)lew(k, P)
®)

The graphical structure of Eq. (7), as well as that
of its perturbation expansion, is exhibited in Fig. 1.
It is easy to see’ that the vertex function I'(k, p)
does not, in fact, depend on k, so that one may
further reduce (2.5) to

I'(z;y,2) =

T(k,P) = T, + f(—;% [% — (Po - &P;l-) _ 'L'e:!_
x —3™ ___rw p).  ©

(& — ') + ]
Finally, we take note of the I = 0 character of the
bound state, in writing I'(k*, P,) for the vertex func-
tion in the frame P = 0. It may be that the vertex
function rather than the wavefunction is a more
natural subject for discussion in the nonrelativistic
domain. However, the two are simply related in
that domain by ®

<P0(k2; Py} =

It is not at all obvious, although it might be
expected from previous work,” that the Born ex-
pansion,

T(k*; Py)/(* — mP, — ie). (10)

ds’ [—mVE — k)]
@2r)* (k* — mP, — 1e)

dk’ k"’ [-mV (k' — k)]

T(*, Py) = 1‘0{1 +

T ) @y T 7 = mP, = 4o
[—m P&’ — k) B .
x(knz_mPo_ie)‘,' "'}——TFOM(kaPO)y (11)

7 See Eq. (2.4).

¢ We write the wavefunction of Eq. (10) off the mass shell
(Po = —a/m) of the composite.

? See the material in Ref. 1 after Eq. (39).
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)

Fre. 1. Inhomogeneous Bethe-Salpeter equation for (a)
the vertex function I'(k, P) and (b) its perturbation expansion
in Feynman graphs.

has the property (1). Notice that since®’

Zl(_aza )‘) = D(_azy )\)y (12)
it follows necessarily that
I(~a®, —a’/m) = D.Zy/D(~a’, \) = (13)

On the other hand, one could define a “renormalized”
D function (D,) such that

D.(K, \) = D&, N/Z,(—a®, \)
with
r'(* k*/m) = T./D.(k*, N);
then’
D&, N

[(lc2 + o) f 2k dk’ 8°(k’®) :l
T (k12+ 2)(klz _ 2 —’Lé) .

In particular, we point to the apparent dissimilarity
between the expansion of the symmetrical D func-

tion® !
2 2
i =12 ["ar o, (14 55)

S Qo<1+f%ﬂ’
— 7—}5 j; dk’ fow dk’’ Ly - fie)l(k”2 —

]C,2 k,/2 2 2
X [:Qo( —;k/ku_'- E )] } + e

16 Since the Jost function vanishes on the mass shell of
the composite, we identify Z, = 0 with the eigenvalue
condition.

1t B. W. Lee, Seminar on Theoretical Physics (International
Atomic Energy Agency, Trieste, 1963), p. 331.

k* — i)

(14)
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and the inverse of the Born series M (k¥*, k*/m) in (11),
M, k*/m)

N7 (K /K) dE’ (k” + 5+ u’)
=1 f E? — E* — de Q° 2K’k

o1 A o) ]
[

— .1_ 7] (k,/k”) (k,z + k' + “2)
e f d 2=k — e ™ WK’
(&""/k) (k + K+ u)} .
X kll2 _ k2 — Z'E QO 2kl/k + . (15)

[However, note that the terms O(\) are identical,
Du)(kz kz/m)

2
Ll
T gaef)
being merely M ;;(k*, k*/m) expressed as a dispersion
relation,

- k2> 11 ,, Im M\, s'/m) :I
ifr2 &) = ’ CVANNE] .
Mu)(k "'m ﬂ_j; ds s — k° — de a7

Note added in proof: The mode of proof suggested
by Eqgs. (16) and (17) has been extended to O(A%)
by the author (unpublished). It requires the use of
the identity

1 1
P k2 — ka IC2 — 3 = 11'26(’62 - kf)a(lf —_ kﬁ)
1 1 1

to put M (2)(k , k*/m) into the symmetric dispersion
form D, (k*, k*/m). Suitable generalization of the
aforementioned identity for more than two variables
is needed in the higher orders.

III. PROOF FROM THE COORDINATE SPACE

FORMULATION OF POTENTIAL SCATTERING

We may resolve this seeming paradox through a
detailed comparison of the Fourier analyses of the
physical and Jost solutions to the radial Schrodinger
equation. For scattering in the ! = O partial wave,
one has'’

ok, 1) = sinbr + 2 [ " Kok 7, )l ), (18)

where the Green’s function kernel, K.(k; r, '), is
given by
Kok;r, 1) = —k™sin kro eV (r); (19)

12 Qur notation follows that of Gillespie [J. R. Gillespie,
Ph.D. thesis, University of California, 1963 (available as
UCRL-10762)] closely. However, for simplicity, we have
taken our ¢k, r) [Eq. (26)] to be £ *! times his. We have
also corrected a misprint in his Eq. (48) defining g¢.(%; r, /).

R. ROCKMORE

V(') is defined by
Vi) = —e*/r, (20)

so as to exhibit explicitly the A dependence. In terms
of the Fourier sine transform of ¢,(k, ),

ke, ) = (2) [ wolte, ) sin e a,

one finds analogously

@n

Dok, B = () 8k — k) + pr— g >

B — e

® rr k,z + k,,2 + #2> n
x [ awq (R L) g, 1,
Now it is possible to rewrite'® the integral equation
(18) so that the factorized function, ¢o(k, r) defined
by14

(22)

Volk, 1) = M@K, K*/m)go(k, 7), 23)

where'®

ME, k2 /m)

fl

1= f i ke Vgl 1) (24)

R e T

F R
X Qo ( WK

satisfies the Volterra equation
dolk, ) =sinkr 4+ ) f dr'go(k; r, )V {r'Mpolk, '),
]
(26)

V) e @5

with
golk; v, 1) = k7

Since the momentum-space analog of (26) is
Folk, &) = (I) 50 — k'){l _A f dk""
« klll k dkll/ k/rﬂ k/rz
% f (K"’ /k) Qo( + + n)

sin k(r — r’). 27)

k///z — k2 — 'ié 2kllklll

2\t ., S S
x (;) ¢0(k) k )} + kl2 _ k2 ’ier
® , k,2 k//Z
x [ arra(EEELE ) B 1, sy

we have, by inspection,

af 2 10_2) _ 2\‘ . (klll/k) dr’’’
M (k "'m 1 ./ dk f P >
kluz knz
% Qo( oot et )( ) $oll, k)
(29)

i3 H. Brysk, J. Math. Phys 4, 1536 (1963); N. Corngold,
“Lectures on Neutron Physics’ (unpubhshed)

4 Qur notation anticipates our result.

1 The Bornp series [Eq. (11)] follows from the substitution
into (25) of the iterative solution to Eq. (22).
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=142 f k" ¢ V(I )golk, ).

(30)

Jost and Pais have shown rather elegantly in Ap-

pendix II of

their paper®

that the function

M7 (K, k*/m) so defined [Eqgs. (29) and (30) above]
is just the Fredholm determinant D(k?, \). Indeed,
defining the D function recursively, as in Brysk,'

one has

D(*, N =

with

and

c(u+ 1) (kz)

where
BY&; K, k')

__am
E? — E — e

—n fo ndk"’Qo(

=0

> (@) EOEN, 6

(32)

=f BV K, k), (33)
0

CELGETY
(»)r1.2
[c (k )QO( 2klkll

k1n2+k12+u2

2klklll

)E"‘”(k;k"',k")],
34
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so that
(— 1™ + DI

- fo T K VS R, 1), (35)
where

8ol 1) = T N8k, 1) (36)

Finally, we note that our proof yields, as a by-
product, the perturbation-theoretic representation
for (Z,(—ao®, N\))™" obtained by Bertocchi et al.?''®

(Z.(—a*, \)!
= lim {1 +2 A f k(k /k) dk’ Qo<k'2 + 5+ “2)

kS —a _ k2 - 116 2k,k
)\ , , (k/ kll) (k/2+k//2+”2)

(k"/k) (k”? + &+ u2> . }
X k”2 _ IC2 e Qo 2kkl/ + . (37)

ACKNOWLEDGMENTS

We wish to express our gratitude to Dr. Jack
Chernick and to the late Dr. Charles E. Porter
for their hospitality during our stay at Brookhaven
National Laboratory in the summer of 1964.

18 However, they have chosen to consider a superposition
of Yukawa kernels rather than the simple kernel (6).



JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 6, NUMBER 4 APRIL 1965

Vertex Modification for Coulombic Interactions by
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We have been able to sum a class of ladder diagrams for Coulombic interactions to infinite order
exactly and are able therefore to replace a ‘“bare’ interaction with a self-consistent effective inter-
action or equivalently we are able to modify the vertex operator in a manner which may be of par-
ticular significance for systems of low particle density in analogy with what can be done for nuclear
matter and liquid helium. The method is only valid for nearly free particles, the exact energy being
negative but the zero-order description being that of free particles. Effective attractive interactions
between two electrons or interaction with an external Coulombic field constitute perturbations which
fall within the range of validity of the scheme. Despite the limitation of the specific results, the method
is probably of more general use and interest and both the approach and specific results are described

in this note.

OR nuclear matter and liquid helium, the inter-

action between particles is so short ranged (ef-
fectively hard core), that matrix elements of these
“bare’” interactions actually diverge. However, in
perturbation-theory studies, if the contributions of
all those terms representing repeated interactions
between two particles are summed to infinite order,
it is found that the net contribution is finite and a
well-behaved effective interaction may be defined in
this manner.'* This replacement of the original in-
teraction by an effective interaction is often referred
to as modification of the vertex and corresponds to
replacement of the V matrix by the K matrix in the
Brueckner theory or to evaluation of the reaction
(R) matrix of scattering theory.

Although the obvious importance of vertex modi-
fication for studies of nuclear matter and liquid
helium is well recognized, it has received little
attention for Coulombic interactions. On the con-
trary, the results of investigations of the dense
electron gas have focused attention on the “ring”
diagrams which are important because their contri-
butions are principally responsible for the description
of collective motions in such gases.®> In extremely
low-density electron gases, the work of Wigner* and
Carr® indicate that when kinetic energy is insufficient
to overcome the repulsive interaction between
electrons, the physical state is probably that of an

1 H. A. Bethe and J. Goldstone, Proc. Roy. Soc. (London)
A238, 551 (1957).
2 K. A. Brueckner and W. Wade, Phys. Rev. 103, 1008
1956).
( 3 1\3[ Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364
1957).
( 4 E) P. Wigner, Phys. Rev. 46, 1002 (1934); Trans. Faraday

Soc. 34, 678 (1938).
s W. J. Carr, Phys. Rev. 122, 1437 (1961).

orderly spatial array and interaction energies may
be estimated on that basis.

It is interesting nevertheless that this replacement
of a bare Coulombic interaction with an effective
interaction can indeed be carried out for dilute sys-
tems where in the evaluation of a repeated inter-
action between two particles, all other particles may
be considered to be in the unexcited state. From a
pedagogical point of view, it would be of interest to
show explicitly that the newer results yield a simple
result which can be compared with the application
of conventional theory.

We are able to sum to infinite order all contribu-
tions to the interaction energy of (a) two weakly
bound electrons with paired momenta and paired
spin interacting through a Coulomb potential (with-
out exchange), (b) two weakly bound electrons with
general (nonpaired) momenta and paired spin inter-
acting again without exchange, (¢) two weakly
bound electrons with paired momenta and the same
spin interaction with exchange, and (d) one free
electron interacting with an external attractive
Coulomb potential, but we do not treat particulars of
this case. This summation is equivalent to replacing
the original vertex operator with a modified vertex
and since the Brillouin—Wigner perturbation expan-
sion is used, the effective interaction so obtained is
also a self-consistent one.

Unfortunately it seems that the results have a
severely limited range of applicability being valid
only for systems where the zero-order description
is that of plane waves but the net effect of all the
interactions is to produce a bound state. Presumably
the results may be applied to yield the binding
energy of a bound electron in a low-lying trap and to
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other problems of this nature. In the event that the
final state is of positive energy, this procedure may
be carried through to yield exact scattering cross
sections for simple cases, but these latter results may
be obtained equally well with other methods such
as the partial wave analysis® and are not discussed
further.

We consider two electrons with pair momenta and
paired spins and let H,, H, ¢,, and ¢ represent the
zero-order and exact Hamiltonians and wavefunc-
tions, respectively. Using the Brillouin—Wigner expan-
sion we proceed directly from the time-independent
equations

Ho¢o = E0¢01 (1)
Hy = (H,+ V)¥ = Ey = (E, + AE)y, (2)

to obtain formally

Vv =9+ [(1 — P))/(E — H)]V¥, &)
which may be solved by iteration to yield
3 1—P, — P,
¢—¢0+E_HOV¢0+E HOVE HOquo
Po PO 0
R VT VE g Vet @

where P, is a projection operator onto the subspace
spanned by ¢,.

A matrix element of the vertex operator (x |V| ¥)
is then

W VI =6V oo+ Gl V=5 V e
VRV e T2 Y e e, ©)
or equivalently,
Xl V1) = (x|v leo), (6)

where
v=V+ V|1 — P)/(E — Ho)lv @

and is the modified vertex operator.

Instead of solving the inhomogeneous Eq. (7)
directly, we evaluate expression (6) if x = |k, — k) by
summing all the terms. The Hamiltonian is H =
H, + V where H, = p/2m + pi/2m V =
—é’/lr, — 1| and is an effective attractive inter-
action between the weakly bound electrons due to
(say) the presence of a polarizable center of attrac-
tion. The initial state is ¢, = |k, — ko) = v7*
exp (—1k,y 1, + iky-T,), where v is the volume of the

6 T.Y. Wu and T. Ohmura, Quantum Theory of Scattering
(Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1962).
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system. Then it can be shown that in the limit as
v — o the terms involving the projection operator P,
are of a higher order in 1/» and ean be neglected. In
this approach, the contributions of the first two
orders are treated as special cases, but all the other
terms from third order onwards may be written so
that the contribution of (n + 2)nd term is given by

ol Voo (B = H)'V Joo)®
= [ AR ARV ) g
X 1 1 1
2 (k, — k, )’ (K, — E)
| 1 ,
X 27I_2(k"_1 _ kn_2)2 P k2 — E (kl V |¢o)

= (- f T, - % G V )
(1{1l E)* G(k'n kn—l)
1
X GK,-y, Koms) -+ Gy, K) & =5} &V [eo),

where the function G(k, k') is given by

A~ (1 V1 1 1 )*
ot 1) = (15) ey (o) - ©
We expand G(k, k') as a bilinear form so that

Gk, K) = 3 aubak) i), (10)

where the as yet unknown functions ¢,(k) con-
stitutes a complete set of functions orthonormal in k
space, that is

[ v.0ws® ¢k = 5.,

(11)

If the set ¢, is the set of orthonormal character-
istic functions of the integral equation

v = [ 6 )y, ow, B (12
then

1

dor = 5 [ VU0 Pk = Lo (13)

Substituting this result back into Expression (8), we
have

1
<X'V —HOV“.E—- Vl'ﬁ)m

= ()" E g [ PR 6 VB g

1

X Yak) Y. (&) Py &'V |po). (14)
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Subsequent summation over n from n = 1 (the
third-order term) to n = «, yields an expression for
the sum of all the ladder diagrams exclusive of the
first two contributions. Actually, as we shall see,
solution of the integral equation is achieved in terms
of .(s) which is the Fourier transform of the func-
tion ¢, (k)/[k* — E]* and we may therefore more com-
pactly write the exact expression for {x |v| o)

1
E - H,

X View =&l V+7V 14

+ Z (N """) f &%k &k’ d°s d°s’

X Vksoa(S)e"s'ksaﬁ(S’)e's TEY e, (15)

thus yielding the matrix element of the modified
vertex operator in terms of the solutions of the homo-
geneous integral Eq. (12). In expression (15), N7,
is a normalization factor.

For weakly bound particles with paired momenta,
and paired spin, the integral equation to be solved is

1 1
¢a(k) = )\a f [k2 _ E]} 27r2(k _ k/)z
1 ’ 31, ¢
| X g -0 dF.(16)
We define the function ¢, (k) by the relation
e@k’ — E} = y(&) 1

and find that the differential equation satisfied by
the Fourier transform of ¢(k) is

Vie(s) + (V/|sDe(s) = —Ee(s).  (18)

This may be compared with the Schridinger
equation for one electron in a spherically symmetric
Coulomb potential and we know therefore that the
solutions may be written in terms of products of
radial parts and spherical harmonics. In particular
we obtain the eigenfunctions to be

3 ;(a—l—-l)!}}
@) {Qa[(a T
X e—E/2£lL2i:§(£) Ylm(os ﬂ")r

where Li(f) are the associated Laguerre functions
and Y, are the spherical harmonics. The eigenvalues
are

eals) =

(19)

(20)
@1

Ae = 2ve,
y = (=B},

and the variable ¢ is related to s by the transforma-
tion ¢ = 2vs.

Y.-H. PAO AND H. L. FRISCH

It is found that the normalization constant N7,
of the equation is independent of «, I and m and is
simply given by

N = 1/2y.

For two electrons with paired momenta but with
the same spin, there is exchange and the integral
equation corresponding to (16) is

(22)

y) = xf {Zr(kl Ky

11 } Y(')
27r2 (k +k/)2 [kl2 _ E]

7 &K’ (23)
and we find that the solutions ¢(s) in this case are
the odd members of those listed in expression (19)
and the normalization of ¥ (k) is carried out as before
with identical results.

For two electrons with paired spins and general
momenta, a typical and general transition at a
vertex would be from state (—k’ — q, k') to that of
(—k — q, k) and the integral equation to be solved
in order that we be able to modify this vertex is

#’(ky -k — q.)

=0 [ B+ 3+ 9 — B 26 — )T
X Bk + 30 + @ — B
X ¢k, -k — q) d’k.

This equation may be solved in almost the same
manner as that indicated in the first case, and (6) is

(24)

Woled = V+ V=gV

1
: &k &K’ d's &S’

X Vipm(s)e™ "1 V8N RV Jpo),  (25)
where the eigenfunctions 7%, are formally the same
as those exhibited in expression (14) except that
the eigenvalues are now

= 2(—E + 1q’)t = 2ys (26)

and the transformation between £ and s is similarly
altered.

The self-consistency condition in all the cases
cited is satisfied by using (6) to determine the true
energy E corresponding to the exact wavefunction ¢
and this is done by obtaining from Eq. (2) the



VERTEX MODIFICATION FOR COULOMBIC INTERACTIONS

relation
E = AE+E0=<XIH° [¢>+<AV I‘/’)
x|
_ O How leo) + v @)
= &l v led @)

and iterating the expression until the energy E so
calculated is the same as that used in the energy
denominators of the perturbation expansion.

It is clear that the vertex operator for one electron
interacting with an external Coulomb potential may
be modified in a similar manner.

We have found that the integrations and summa-
tions remaining in expression (15) can indeed be
carried out analytically except for one remaining
quadrature which may be evaluated numerically.
However if the effect of the interaction V is to re-
sult in g binding energy it is clear that it needs be an
attractive interaction which may be the sum of
electron repulsion and attraction due an external
Coulomb potential.

In the event that the final state is not a bound
state, it is possible that our method can be used to
find also explicitly (as an infinite sum) the S matrix
for Coulomb scattering. The necessary eigenfunction
solutions replacing (19) are then the continuum
hydrogenic functions.”

7H. A. Bethe and E. E. Salpeter, in Encyclopedia of

Physics, edited by S. Fligge (Springer-Verlag, Berlin, 1957),
Vol. 35, p. 110.
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Summerizing, we have demonstrated a new
method of summing to infinite order, a class of
contributions of infinite-order perturbation theory.
Specific results are obtained for Coulombic inter-
actions and a plane-wave representation and the
effect is that of replacing the initial Coulombic
interaction with a modified interaction representing
the repeated interaction of two such particles. The
matrix element of the modified interaction is given
by expression (15), and for weakly bound particles
with paired momenta and paired spin. The functions
¢q(8) are given explicitly by expression (19). In the
remainder of the discussion, we discuss how the
solutions to various other cases may also be recast
in the form of the ¢,(s) functions and the final ex-
pressions for the matrix element are given explicitly.

In application of this method, we consider the
different classes of diagrams representing the contri-
butions of infinite-order perturbation theory, sepa-
rate out those diagrams by using a modified vertex
in the simplified diagrams. Finally, this method is
not confined to plane-wave representations, and
corresponding solutions for other representations
would not be restricted to the discussion of weakly
bound particles and would be interesting and useful.
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Theorems concerning the interrelation between the Poincaré group and the symmetry group of
elementary-particle interactions have been proved under weaker conditions than that of McGlinn.

1.

HE possibility of combining the Poincaré group

(= the inhomogeneous Lorentz group) and the
symmetry group of elementary-particle interactions
has been discussed by various authors."'? Recently,
McGlinn has proved® an interesting theorem con-
cerning this problem: Assuming that

(I) 4;,, G=1,2, .-+, n), together with the
generators of the Poincaré group, M, and
P.(u,» = 1,2, 3, 4), form the bases of a Lie
algebra L,

(II) Poincaré algebra P is a subalgebra of L,
and that

(III) A/;’s commute with all the M ,,,

it is concluded that (a) A,’s constitute a subalgebra
A, and that (b) L is the direct sum of P and 4,
provided A is semisimple.

A motivation of the assumption (IIT) was that
we wish to consider a symmetry group of the inter-
actions, bases of which irreducible representation
correspond to a multiplet with same spin parity.
In order to acquire such a property of the symmetry
group, however, it would be sufficient to assume that

(III)y A;s commute with M,,, M,;, and Ms,,
the generators of the spacial rotations which cor-
respond to the angular momentum operators.

In this note, we point out that a condition weaker
than (I11),

(III"") A/’s commute with one of the generators
M By
leads to essentially the similar result as the McGlinn
theorem.*

* Work supported by the National Science Foundation.

! F. Lurgat and L. Michel, Nuovo Cimento 21, 574 (1961);
L. Michel, Lecture note of the Istanbul Summer School,
1962 (to be published).

2 A. O. Barut, Nuovo Cimento 32, 234 (1964).

3 W. D. McGlinn, Phys. Rev. Letters 12, 469 (1964).

¢ For further developments of the McGlinn theorem, see
F. Coester, M. Hamermesh, and W. D. MeGlinn, Phys. Rev.
135, B451 (1964); O. W. Greenberg, Phys. Rev. 135, B1447
(1964); M. E. Mayer, H. J. Schnitzer, E. C. G. Sudarshan,

2.

According to the assumptions (II) and (III"),
we have’'*

My, Myo] = W(8,M,; + 8.M5,
— oM, — dLM), (D)
(M, P.] = i(60,Pu — 8.,P), @
[P, P,] =0, @)
and
[4;, M) =0, )

where we have chosen M,, as the generator which
commutes with A;’s without loss of generality.
Then the assumption (I) implies that

[4;, M\] = 3aM,, + b] P, + ¢ AL ®)
with

vo v k
;e = bis = ¢ = 0. (6)

To have a consistent algebraic system, we must
examine various Jacobi identities. Calculating the
following

[[AH M)\u]r er] + [[M)\m Mw]: A:]
+ [[Mvﬂ Ai]y M)\u] =0,

we obtain

R. Acharya, and M. Y. Han, “Concerning Space-Time and
Symmetry Group” (preprint, 1964); A. Beskow and U,
Ottoson, “On the problem of combining the inhomogeneous
Lorentz group with a Lie group’’ (preprint, 1964); see also
lectures given by L. Michel, M. Hamermesh, and M. E.
Mayer at the Symposium on Lorentz group, Boulder, Colo-
rado, 1964 (to be published).

8 We use the pseudo-Euclidean form of the Minkowski
metric such as used in W. Pauli, “Continuous Groups in
Quantum Mechanics”’ (CERN preprint, 1956).

8 Greek letters A, u, », and ¢ run over 1, 2, 3, and 4; Roman
letters 7, k, I, etc. run over 1, 2, --- | n; and the summation is
assumed whenever repeated indices appear.
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[A;, M) = a; M3, + biMy + c;Pe,

[A,', Ma‘] = —a,-M23 -_ b,‘M14 -_ ciPly
[4;, M\,] = a;M,, + b; M, + d;Py, )
[4;, Mz = —a; M., — b;My; + d;P»,

[Ai; M:M] = d,'Pg —_— C,-P4_
From these relations we get’

[A;’ Mw] = 07 (8)
where

A: = A,’ + 'l:a,-Mlg + ib,‘M;“ + 7:0,-P3 + 'Ld,P4 (9)
Then, the McGlinn theorem?® leads to

[A], P\] = e;Py, (10)
(45, A}] = cudl, (11)
CixCmi T+ €iCh; - cliem = 0 12)
and
che = 0. (13)

Thus we have proved the following theorem:

Theorem 1. Under the assumptions (I), (II), and
(I11""), we can find a set of generators A/, by suitable
linear combinations of the given generators, which
satisfies Egs. (8)—(13).

The following theorems® can be proved readily.

Theorem 2. Under the assumptions (I), (IT), and
11, if {A4;} forms a subalgebra 4, then it has
the same structure constants’ c}, as those of {A’}.

Proof. Using Eqgs. (8)-(12), we obtain
[4;, Ai] = [4], 41]

+ ilcien — cie)Ps + i(dier — die;)Ps

7 The author is indebted to Professor H. Morikawa for
discussion on this point.

8 Some related theorems have been discussed in a different
manner by L. Michel at the Symposium on Lorentz group,
Boulder, Colorado, 1964 (to be published).

® Physical systems classified by the representations of
algebras {A;} or {A’;} are different, though they are
mathematically isomorphic. However, the classification due
to the algebra {A’;} is simpler than that due to {4;}.
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+ i(b;d, — bid;)Py — i(bjce — bic;)P,
= ¢ A, + icha My, + ichb M,
+ ifche; + bid, — bid; + ciee — cie; )Py
+ i{chd, — bicy + bic; + diey — die;}P,. (14)
Then, the assumption leads to
[4;, A:] = ¢4, (15)
with
e = cixb, = 0, (16a)
cher = —bydy + bud; — cier +ce;  (16b)
and
chd, = bie, — bic; — diew + die;. (16¢)

Theorem 3. If the subalgebra A in the preceding
theorem is semisimple, then 4; = Ajand L = P@ A.

Proof. According to the McGlinn theorem, Eqgs.
(13) and (16) imply that

a,-=b,-=c,-=d,-=e,~=0

for the case where A is semisimple. From this and
Egs. (8)-(12), the theorem follows. (q.e.d.)

Note added in proof: Statement (a) of the first
section of the present article has been assumed in
the proof of the theorem in Ref. 3. For its proof,
see the article of the author, “On the McGlinn
Theorem” (Progr. Theoret. Phys., to be published).
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Necessary Condition on the Radial Distribution Function*

EvucenE FEENBERG

Wayman Crow Laboratory of Physics, Washington University, St. Louis, Missouri
(Received 11 September 1964)

Trial functions ¢g(r) may be used as radial distribution functions to study the ground-state proper-
ties of a uniform extended quantum fluid (liquid He, nuclear matter). A result obtained by Wigner
and Seitz in the study of the charged electron gas imposes an integral inequality on any assumed g(r).
The relation is [*[1 — g{r)}r dr/[[[1 — g(r)r? dr]} < 1.702/3% = 1.243. This inequality places an
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effective constraint on the location, magnitude, and width of the nearest-neighbor peak.

ONSIDER the standard many-particle problem

of N identical interacting particles in a box of
volume Q (with p = N/Qheld constant and N allowed
to increase without limit). Let g(r) denote a trial
function introduced to serve as radial distribution
funetion for the ground state. The definition of a
radial distribution function for a pure boson state,

ng(r 12)

= N = 1) [ s, o 5l doe, (D
requires the existence of a normalized symmetrical
many-particle state function ¢ capable of generating
the proposed ¢(r). For a pure fermion state the cor-
responding definition is

p’gra) = NN — 1)

,erN)lz d034...N

@

implying the existence of a normalized antisym-
metrical function ¢ of the space and associated dis-
crete coordinates of all the particles. The basic prob-
lem posed by Egs. (1) and (2) is the determination of
useful necessary conditions on any proposed g(r)
for the implied state functions to exist. The proba-
bility interpretation of g(r) implicit in Eqs. (1) and
(2) can be used to derive functional inequalities
which must be satisfied by any function propoesed for
the role of radial distribution function. In general
these inequalities limit the magnitude and width of
the peaks and valleys exhibited by g(r). Several
necessary conditions of this type have been derived
by Yamada' and by Garrod and Percus.”

.....

* Supported in part by the Office of Scientific Research
Grant A 'OSR-62-412, S. Air Force and the National
Science Foundation Grant GP-3211.

t M. Yamada, Prog. Theoret. Phys. (Kyoto) 25, 579

(1961).
2, Garrod and J. K. Percus, J. Math. Phys. 5, 1756

(1964).

An explicit inequality based on Egs. (1) or (2)
in & form illuminating and illustrating the arguments
developed in Refs. 1 and 2 can be derived from
the existenece of an absolute potential-energy min-
imum in a classical physical problem. This problem
is the charged gas in a box filled with g fixed uniform
charge density of opposite sign and equal total
amount of charge. Many years ago Wigner® called
attention to the fact that the elassical potential
energy of the charged system attains an absolute
minimum value when the particles are located at
the lattice points of a body-centered cubic lattice.
This statement is equivalent to the inequality

p“§VCnulomb(1! 21 T, N) Z —"N(l ‘79262)/2?.19&
= —Ne’0.896(4r/3)},

6)

introducing the value at the minimum estimated by
Wigner and Seitz* and by Fuchs.” In Eq. (3) r, is
the radius of a sphere of volume p™*

To obtain a functional inequality on g(r) from
Egs. (1)-(3), I use the (presumed existing) nor-
malized ¢ to compute the expectation value of the
Coulomb potential energy. The result is

® 2
P XV contoms) = 20N ot j; lgtr) — 1] ?F,.z dr

> —Ne'0.896(4x/3)}, CY)

or

# [ - g <M2(E g

The normalization condition on g(r) implied by
Egs. (1)-(2),

P ‘/:» [1 — g} dr = 1/4x,

3 E. P. Wigner, Trans. Faraday Soec. 34, 678 (1938).
+ B, ngner and F. Seitz, Phys. Rev. 46, "500 (1934).
s K, Fuchs, Proc. Roy. Soc. (London) AlSl 585 (1935)

®)
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may be combined with Eq. (5) to yield

fo [t - g ar / [ f " — g dr]; < 1—;,’?

=1243; (@)

Eq. (7) is the desired inequality.

[Equation (6) involves the asymptotic behavior
g(w) =14+ ON""), » > 1, which can be shown to
hold for the ground state when the interaction
operator includes a strong short-range repulsive
component (for any two particles approaching
closely). Let X denote an arbitrary half-space (vol-
ume = 1iQ) in Q; also n(r) = 1in X, n(r) = 0 other-
wise. % = D, n(r;) is the particle number operator
in X with mean value (@) = %N. The result
v > 1 follows from {(9 — (3))*) < N. The basic
theorem on number fluctuations in X for the ground
state is

((ov — ()
= & [ (1 = gt = n)nC) doy o,
~ ON*™) + IV,

where v is proportional to the total surface area
common to X and the complementary half-space
(provided that the linear dimensions of the elements
making up X are large compared to p~/%).]

Note added in proof: A more direct characterization
of the asymptotic behavior of g(r) follows from sum
rules which require that the liquid structure function
S(k) vanish as k — 0 [P. J. Price, Phys. Rev. 94,
257 (1954)].
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Trial functions in the form

gtr) = Zp*r/a; i, + -+ 4 )

may be tested by Eq. (7). Failure of Eq. (7) for
physically interesting values of the parameters u
is sufficient reason to discard any proposed g(r). The
plain implication of such failure is that no ¢ function
exists capable of generating the given g(r) by Egs.
(1)-(2). Interesting values of u are determined by
using g(r) to compute the expectation value of the
physical Hamiltonian.®® The minimum value of
(H) in the u space defines a point, u = w*(p), centrally
located in the interesting region. In general Eq. (7)
imposes a strong constraint on the form of Z(s; u)
and on the allowed range of u values. Comparing
integrands of the integrals occurring in Egs. (5) and
(6) we see that the former gives relatively more
weight to the region below the first rising slope of
g(r) and relatively less weight to the nearest-neighbor
peak. The two conditions together, as combined in
Eq. (7), produce an effective constraint on the width
of the region near the origin in which g(r) is small
and on the magnitude and width of the nearest-
neighbor peak.’

I take pleasure in acknowledging instructive
critiques by Dr. Henry Woodrow Jackson and Dr.
Robert Griffiths. Thanks are also due Professor
Wesley Brittin for the opportunity to participate in
the summer program of theoretical physics at the
University of Colorado.

¢ ¥. Y. Wu and E. Feenberg, Phys. Rev. 122, 739 (1961).

7 W. Massey, Phys. Rev. Letters 12, 719 (1964).

8 F. Y. Wu and K. Feenberg, Phys. Rev. 128, 943 (1962).

? This simple qualitative characterization involves the im-
plicit assumption that the oscillatory behavior of g(r) beyond
the nearest-neighbor peak is strongly damped.
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High-Energy Behavior at Fixed Angle for the Five-Point Function
in Perturbation Theory*

J. V. GREENMAN

Department of Applied Mathematics and Theoretical Physies, University of Cambridge, England
{Received 28 September 1964)

The validity of the d-line method used by Halliday in studying the high-energy behavior at fixed
angle of the four-point function is examined in more detail. This is carried out within the context of
determining the high-energy behavior at fixed angle for the five-point function. The leading asymp-
totic behavior of the sum of all planar five-point graphs in a ¢® theory at fixed angle is s~2.

INTRODUCTION

N studying the high-energy fixed-t behavior of
ladder diagrams, Polkinghorne' showed that to
obtain the leading asymptotic behavior one need
only integrate over a small region around the zeros
of the coefficient of s. Since the coefficient is in fact
a; o -+ ay, the product of the o’s of the rungs, a
zero occurs whenever one of a,, - -+ , ay is set zero.
The integration procedure is then straightforward—
one integrates successively the o’s over a small
region near the origin.

Halliday®'® has generalized the procedure for more
complicated diagrams at fixed ¢ and for planar graphs
at fixed angle. The procedure is to find & minimum
set of o’s which set the coefficient zero when they
themselves are set zero. One then integrates over
a small region around the origin of these o’s, making
the approximation that only those terms of lowest
order in the sealing variable are to be retained. This
set is termed a d line since when traced on the graph
it forms a connected line of length d, where length is
given by the number of lines of the graph belonging
to it. One then looks for another minimal set of &’s
which will set to zero the coefficient, now simplified
by the omission of certain of the terms. It is not at
all obvious whether this second set will be connected
nor what length it will have. In fact in the fixed-
angle case we can find disconnected sets. However,
we show that, provided they do not form loops with
the original d line, their length is bounded below by d.
In determining our sequence of minimal sets we
follow the procedure of Tiktopoulos.* We find that
maximum sequence of minimal sets which do not
form loops with one another. In Sec. II and the

* The research reported in this document has been spon-
sored in part by the Air Force Office of Scientific Research,
OAR, under Grant No. AF EOAR 63-79 with the European
Office of Aerospace Research, U. S. Air Force.

1 J. C. Polkinghorne, J. Math. Phys. 4, 503, 1393 (1963).

2 I, G. Halliday, Nuovo Cimento 30, 177 (1963).

31, G. Halliday, Ann. Phys. (N. Y.) (to be published}.

4 (. Tiktopoulos, Phys. Rev. 131, 480 (1963).

Appendix we prove that the length of these minimal
sets can never be less than d. In the proof we need to
introduce the notion of quasiconnected d line. We
now integrate over all these minimal sets and find
the asymptotic behavior as s™° In”™* s where M is
the number of sets in the sequence. If, however, the
final integrand does not converge we need to study
the singular configurations,” those sets of o’s giving
rise t0 a pole in the final integrand and to scale over
these configurations as well as over the sequence of
d lines. Section III is devoted to finding these con-
figurations and Sec. IV to the rescaling procedure.

But even in graphs containing singular configura-~
tions the leading behavior is still s™* In’s where a, 8
are certain positive integers. The final crueial point
is showing that for the subeclass of planar graphs
with minimal length d the power of the logarithm is
bounded. Summing all planar graphs leads to an
asymptotic series whose leading behavior is that of
its first term, the Born term.

I. KINEMATICS AND THE TOPOLOGY OF
FEYNMAN INTEGRALS

Let us first consider the kinematics of the two-
to three-particle process in the center-of-mass frame.
Figure 1 represents the 3-momentum of the par-
ticles. The 3-momenta of the three outgoing
particles form a triangle and hence define a plane,
the outgoing plane. Let E be the total energy of the
system, and = — 8,(x — ;) the angle the 3-momen-
tum of particle 4 (particle 5) makes with that of
particle 3. Thus the kinematies are completely

Fra. 1. Two to three-
particle kinematics,
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determined if we are given E, 6., 6; and the angles
8, ¢ defining the line of the two incoming particles in
relation to the outgoing plane. To be specific, let
E,, g; be the energy and magnitude of the 3-momen-
tum of the 7th particle, then from the conservation
laws and mass constraints we determine g, g4, ¢5 a8

sin (6, + 6,)F

G s 6, £ sin 0, 6y = F (D

~ sin 0,5 _
9= Sin 04 + Sill 05 + Si.n (04 + 05) - >\4E’ (2)
L 04E = )\5E1 (3)

%= §in 6, + sin 6, + sin (6, + 65)

as E becomes large.
Hence, if p, represents the 7th particle’s 4-momen-
tum, we have

PiPiv1 = q:g:[l — cos (2, ¢ + 1)]
= ANAisa[l = cos (2, 7 + DIE® = k; . E,

which tends to infinity with E. For the five-particle
process we can take the five independent variables

as 8;,:41 = (p: + p;+1)2 2 =1, ---, 5. All these -

invariants tend to infinity as E.

In using perturbation theory for planar graphs we
will be examining Feynman integrals in the form
first derived by Chisholm.® This involves two func-
tions C, D.

C(e) is a homogeneous polynomial in the a’s of
degree [ where [ is the number of loops in the diagram.
There is a 1-1 correspondence between the terms of
C(a) and the simply connected sets of lines of the
graph. Each term in C(a) is the product of the o’s
of the lines that have to be removed to obtain the
simply connected set associated with that term.

D(a) = 84,000,y + K where to each division
of the (p 4+ ¢) external particles into two sets
(G ++ 435+ jo) where p < g, 1 < p corresponds
an invariant s,q .. + + p,) =
(pi. + --- + p;,)° in the center of mass. The g, ,q,’s
are homogeneous polynomials of order ! 4+ 1 in the
a’s. To each invariant corresponds a set of partitions
of the graph which divide the graph into two con-
nected parts; to one part are attached the (7, - - - , 7,)
external particle lines and to the other part the re-
maining ¢ external lines. (These partitions are not
to cut lines of the graph more than once, enter loops
more than once, nor to cut vertices.) The coefficient
of 8¢,.¢) s 2 sum of terms, each term corresponding
to a particular partition of s, ., and is a product of
the o’s of the lines cut by partitions with the two C

§ R. Chisholm, Proc. Cambridge Phil. Soc. 48, 300 (1952).
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functions corresponding to the two connected parts
separated by the partitions considered as separate
graphs. (—K) in the equal-mass case is m*C(a) (D, a).

The general planar five-point graph gives an
amplitude of the form,

Corceaze-n Il
K(l)'/; ‘/; Dl+2(s’ E) y (4)

where ¢ is the generie symbol for the o’s, K(I) is a
constant irrelevant for our discussion, and s de-
notes invariants. For the present kinematical prob-
lem we can express all invariants as proportional
to s;. and consider the asymptotic form of the integral
as 8, tends to infinity. In fact let us write D =
sg(k; i+1, @) + h, where s, = s.

The procedure is this—we integrate only over
those regions of the o’s where g ~ 0." g is not always
positive in the hypercontour and hence these regions
can lie properly within the hypercontour. We can
avoid g becoming zero here by distorting the contour
except when this is prevented by the occurrence of a
pinch.! Such pinches do occur in certain planar
graphs. No rigorous argument has been given but
examination of some specific graphs indicate that
contributions from within the hypercontour do not
dominate the contribution from the endpoint. We
assume that this holds generally. Thus considering
the endpoint contribution, suppose that, by setting
p o's zero, g is zero. We integrate over a small neigh-
borhood of the origin of the space of these p o’s
using for convenience the scaling transformation®
which sweeps out the region of integration by planes
parallel to the plane »_” «; = 1 rather than planes
parallel to the axes. The leading asymptotic be-
havior is obtained when p is minimal’ as can be
verified by simple integration. The Feynman ampli-
tude is transformed under the scaling transformation
to the form

folHdE' B(ZE’—I)fOIHdaa(Za_I)

“dp p" 'C" (¥, &)

o log +HTF 0 O
where £ is the generic symbol for the o’s not scaled,
C’, 1' are the C, h functions with only terms inde-
pendent of p retained and ¢’ is the g function with
only linear terms in p retained. The variables &,
arise in the scaling transformation as a; = pa
G =1, ---, P) with the constraint » %, & = 1.
¢ is some small positive quantity. Now since the

X

¢ P, G. Federbush and M. T. Grisaru, Ann. Phys. (N. Y.)
22, 263 (1963).
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Fie. 2. A disconnected d line.

leading asymptotic behavior must be independent
of ¢ we can take its value as large as we like with
the same approximations made.? In fact it will be
convenient to take e = 1.

We must now find these minimum sets which,
following Halliday,” we call d lines, where d =
min (p). Thus a d line is a minimal set of &’s which
reduce each term in g to zero when each of the (d)
a’s is zero. The solution is obvious when the problem
is translated into a topological form. We need a
minimum set of lines such that each partition cuts
at least one of the lines. Hence a d line is a simply
connected line to which belongs at least one vertex
of each of the sections of the boundary.

II. DISCONNECTED d LINES

We now follow the method of Tiktopoulos* which
requires us to scale in succession as many d lines as
possible, provided

(i) in the set of d lines, the lines do not form
loops with one another;

(ii) at any stage the o’s in the new d line do not
contain as a subset the o’s contained in any one 6
function.

In the first scaling, the d line is necessarily con-
nected but this need not be so in any subsequent
scaling. For consider the example in Fig. 2 where
the first scaling is a connected d line of length 9.
The second scaling set, a disconnected set of length
9, is an effective d line since it also reduces every term
in g to zero when all the o’s of the set are put equal
to zero. On first looking at this graph this does not
appear to be so, but we can check that if we find
some partition associated with some invariant which
does not cut any line of the second set then it cuts
two or more lines of the first set. It is just these terms

J. V. GREENMAN

of the g function arising from these partitions that
we ignore in our approximation. We call these dis-
connected sets, disconnected d lines. In future,
reference to d lines implies both connected and dis-
connected d lines. It is an important question whether
we can find a disconnected d line whose length is
less than d.

Theorem 1. Disconnected d lines not forming loops
with previous d lines can never have length less
than d.

Proof. The proof is somewhat complicated and so
we divide it into three sections.

(i) The case when we make a disconnected
scaling after one connected scaling.

(i) The case when we make a disconnected
scaling after p connected d-line scalings not forming
loops.

(iii) The case when we make a disconnected
scaling after p d-line scalings (both connected and
disconnected) not forming loops.

We study the first case here to introduce notation
and to illustrate the method of argument in a simple

~ case. The other two cases we consider in the Appen-

dix.

(i) Suppose we have scaled a connected d line
and in tracing it on the graph it divides the graph
into five distinet areas. The d line itself is divided
into seven sections which we now separate into two
classes.

A section is a type I section if partitions of only
one invariant cross it.

A section is a type II section if partitions of more
than one invariant cross it. :

The separation is meaningful since in our approxi-
mation only partitions which cross one section of
the d line, hereafter referred to as “significant”
partitions, need be considered. Hence each signifi-
cant partition is associated with one section. A class
I (class IX) partition is one which is associated with a
type I (type II) section. There are five sets of class I
partitions each associated with an invariant. For
each invariant s; ;,, the class I partitions define an
area A; ;. and an internal boundary line z; ...
For instance, in Fig. 3, corresponding to s;;, 45 =
A, U A; and 25, = 5, Y 8, U 5. To stop these
partitions we need a continuous barrier between
Z:.:+1 and the boundary b;. The length of this barrier
cannot be less than s; by the minimal property of
the d line. It is possible that such barriers can have
a proper subset of o’s in common. However, this
does not alter our conclusion that the length of
these barriers cannot be less than the sum of the
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type I sections, otherwise we would contradict the
minimal property of the d line.

There are two type II sections of our d line, s,
and s;. Consider first the class IT partitions across s,.
If we do not put the barrier to stop these partitions
along s; then the barrier must be in two sections,
one in A, the other in A, as shown in Fig. 3. In this
case the length of these barriers is not less than
81 + 85 + Ss, and class I partitions associated with s,
and s; have also been stopped. Further in this case
we are forced to stop the other set of class IT parti-
tions, namely those across s,, with a barrier along
s;, otherwise we would form loops with the d line.
Thus all class IT partitions and the class I partitions
of s,, s; are stopped, and only the class I partitions
of s, 8, 83 are not stopped. The length of the bar-
biers to stop these partitions is not less than s, +
8, + 8. Thus we have a lower bound of d on the
length of the disconnected set. This conclusion is
even simpler when barriers are put along both s,
and s,.

The argument is more straightforward and the
conclusion unaltered when the original d line divides
the graph into fewer than five areas.

In the Appendix we generalize the argument for
case (ii). Case (iii) is essentially a corollary of (ii)
when we realize that for each disconnected d line
we can find a set of connected and quasiconnected
d lines whose scaling eliminates the same partitions
as the disconnected d line. A quasiconnecied d line
is a connected (d + «) line, in the rth type I section
of which we have removed a, lines where Z a, = a.
It is only necessary to include a quasiconnected
d line in the set in very special circumstances. See
Fig. 18 and the discussion with Fig. 18. We now
scale over as many such connected and disconnected
d lines as possible and then integrate over all scaling
parameters. If the maximum number of sealings is M
using the integral relation*

f‘ f‘ pit - pidp — dpy
’ 791
0 0 [Pl"'ngs-I—h]”

1 - 1
N;z(lns)M IWQ}TJ ag §— o,

(6)

we have succeeded in separating out the s behavior
from the final integral over the remaining variables.
g’y I contain only the lowest-order terms from g, h.
If the final integrand is nonconvergent this indicates
that we are misled into believing this to be the
leading asymptotic behavior. In this case we must
study the poles of the final integrand.

The relation (6) is in fact true only if I + 2 > d,
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e Connected & line
— ___ Possible disconnected d lne

6|1 u%M- = SZ

F16. 3. A disconnected d line must have length not less than d.

but we can prove a lemma that [ 4 2 > d for five-
point planar graphs by a nontrivial extension of the
argument used by Halliday® to prove a similar re-
sult for planar four-point graphs. We omit the proof.
As in the four-point case, equality holds only for the
ladder diagrams. These have been studied. A ladder
with N rungs has asymptotic behavior, s~V ** In** %5,

III. SINGULAR CONFIGURATIONS

We wish to find those sets of a’s which cause end-
point poles of the integrand. These sets of o’s we
term singular configurations.* Our study is con-
veniently divided into three sections.

1. Connected Singular Configurations

First, we consider only connected sets of a’s form-
ing singular configurations. Whatever o set we take
C’, K will have the same order zero. Thus, suppose
we take a set of L lines forming I, loops with d lines
of our sequence D and having [/, internal loops and
then scale the o’s, we find the power of the scaling
parameteris L — 1 4 (I, + 1,)(d — 2) — pd where p
is the lowest power in g. Suppose p = I, + [, that
the number of vertices at which other lines of the
graph meet the set is E’, and only one d line is in-
volved. Then the minimum value of L is 31, + E’ +
2(l; + 1) — 3 giving rise to a pole of order
(2 — I, — E"). Consider those singular configurations
involving only one section of the d line, then we
generate the following family: '

(Al) p=1, 4+ 11, = 0; E' = 0. We have the
self-energy subgraph leading to a second-order
pole (Fig. 4).
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F1a. 4. A second-order
pole.

e d Lline

(A2) p=1,+1l;1, = 0; E = 1. A first-order

pole (Fig. 5).

e d

line

Frc. 5. A first-order pole.

(A3) p=1, 415!l =1; E = 0. A first-order
pole (Fig. 6).

Fie. 6. A first-order
pole.

e d - Ling
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When a junction point of the d line is involved, we
can generate a much richer family of singular con-
figurations.

Bl) p=1L+ 1Ll =0E =0 (Fig. 7).

12 1N\ 5

; nl 13] w] 7
t -~ o
x“/
P
menon d line

Frc. 7. Singular configurations peculiar to the fixed-angle
limit.

As has been pointed out by Halliday® these singu-
larities are peculiar to the fixed-angle limit problem.
For instance the first singular configuration of Fig. 7
would imply a contradiction of the minimal property
of the d line unless three sections of the d line met
at B.

Class B2 (B3) is obtained by insertion of an
external line vertex (internal loop) in class B1.

Bimilarly we can generate families (C1, C2, C3),
(D1, D2, D3) when two, three junction points are
involved. For instance in Fig. 8 we give an example

e
F1c. 8. A singular
configuration involv-
ing two corners of a
z d line.
d Linc

of a second-order singular configuration (p = I, + L,
E’' =0, 1, = 0) belonging to class C1.

Suppose now, still considering the case p = I, + L,
we look for connected singular configurations asso-
ciated with more than one d line.

Theorem 2. Any connected singular configuration
such that p = I, 4 1, associated with more than one
d line can be associated with not more than two con-
nected or quasiconnected d lines.

Proof. We first note that (i) we can always find a
connected or quasiconnected d line that contains as a
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subset any section of a disconnected d line; (ii) for
each d line and for each section of the boundary of
the graph there corresponds a vertex which is the
termination of a section of that d line.

As described before when we trace the d lines in
our sequence on the graph, the graph is divided into
areas, each area associated with some part of the
external boundary. Any connected singular con-
figuration must be wholly within one of these areas
forming I, loops with lines of the d lines forming the
boundary of this area.

Let us suppose that the area we choose to study
has no disconnected section of a quasiconnected
d line along its boundary and that all the vertices
referred to in (ii) lie properly within the section of
the boundary.

We can check that if p < I, 4+ [, then the con-
figuration is not singular. p is less than I, + I, when a
significant partition cuts two lines both of which @)
belong to the boundary of the area; (ii) belong to one
of the I; loops. Such lines are called “p lines.” The
configuration is singular only when there are no
p lines. To examine the conditions when no p line
exists let us examine Fig. 9. A is the area in which
we look for a possible singular configuration. Let
p1, P2 be two p lines. If p,, p, belong to the same d
line then (z,) is not significant. Suppose not, then
by (i) considering p,, p. belonging to connected d
lines «;, a,, We trace on the graph boundaries of
regions B, C formed of the lines of a;, @, only. In fact
¢; € dy, ¢, & dy, ¢y € dy, ¢4 & d,. Because partitions
(x2), (x3) do not intersect d;, d, then between vertices

ay, as(as, ag)

on the external boundary there can either be at
most one external particle line or four or more. Let
the number be I(m). By (ii), between a,a, there must
be at most two external lines. Let the number in fact
be n. Then only the following possibilities exist:

@ ®) (© @

{ 1 0 1 1
m 0 1 1 1
n 1 1 1 2.

Case (a). Suppose there is an external particle
vertex on b; then by (ii), there must be another
external particle vertex on b;. If instead the external
particle vertex were on b, then (i) can be satisfied.

Case (b). This is identical to case (a).

Case (c). The external particle vertex lies on b,
and (ii) can be satisfied.

Case (d). Neither of the external particle vertices
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Fic. 9. A singular configuration is only associated with at
most two d lines.

can be on b; for then one of the conditions I < 1,
m < 1 is violated. Otherwise (ii) can be satisfied.

Now in case (¢) and the second possibility of case
(a) the partition (z,) is not associated with a term
in g. Thus in these cases there can be no significant
partition cutting the area A from p, to p,.

In the other cases either no p lines exist and the
configuration is associated with one d line or there
exists a significant partition which renders the con-
figuration nonsingular. We have actually to prove
that these partitions found in the above analysis are
not eliminated when we trace all the other d lines in
the regions B and C. Take the first possibility in
case (a) where the external particle line on b, splits
b, into a part b] adjacent to a, and b’ adjacent to b,.
Partition (x;,) must cut at least one line of all the
other d lines. If it could not avoid cutting a d line
twice then this implies that two sections of a d line
terminate on the same section of the external bound-
ary (bi’b.bsbb}") contradicting (ii).

If the external particle lines lie on b,, b, there must
be a partition (x,) otherwise the single connectedness
of the tracing would be contradicted.

When n = 1 and the external particle vertex lies
on bybsb, let py, p, be the p lines adjacent to the two
furthermost vertices of the boundary of A involved
in the singular configuration. Because of (ii) ¢; & d,,
¢, € d,, and bs belongs to both d, and d, to avoid
the formation of loops. We can define a new d line,
d’, containing p,, bs, P2, €., ¢4 except in the special
configuration of d,, d; in Fig. 10. In any case the
singular configuration can be associated with at
most two d lines.

We can remove the first restriction in the proof
simply since quasiconnected d lines arise in very
special circumstances. We examine the few ways
quasiconnected d lines are incorporated in the com-
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Fi6. 10. The situation where the configuration is associated
with two d lines.

plex of d lines and the theorem holds in these cases,
An interesting case of a singular configuration is one
associated with the disconnected section of a quasi-
connected d line. An example is given in Fig. 11.
Since a disconnected section of a quasiconnected
d line necessarily lies along a section of a connected
d line then this singular configuration is also asso-
ciated with a connected d line.

Removing the second restriction is also straight-
forward.

2. Disconnected Singular Configurations

We ean form “disconnected” singular configura-
tions out of the classes A1-D3 in two basic ways—
(a) we can string singular configurations on a d line
(Fig. 12); (b) for each junction point we can fit at
most two singular configurations in two corners
(Fig. 13)—the final order of the pole being > " a, —
(N — 1) where there are N configurations involved,
and «, is the order of the rth configuration. We see
here also how a (d + ) line (@ > 0) can give rise

connacted d Line

W ©0000

7 rveeeen q'uasic:mnactad d tineg

Fia. 11. A singular configuration associated with a quasicon-
nected d line.

J. V. GREENMAN

F16. 12. Disconnected singular con-
figurations.

to a singularity. If situation (a) is part of a (d + 2)
line then this line is equivalent to a d line.

3. d Lines Forming Loops with the Sequence D

We consider now the possibility p > I, + ;. In the
fixed-t case, it is obvious that any connected d line
forming loops with the sequence of d lines does not
give rise to any new singular configuration if we
scale the complete loops this d line forms with the
other d lines.

In the fixed-angle case, the conclusion is not
completely true. Consider a connected d line (d;..)
forming I’ loops with the sequence D, then there
exists a significant partition such that p < 1. This
is seen as follows. The partitions remaining after the
sequence D can be divided into two classes:

Class « are those partitions which cross all the
d lines on the same line 6 of the graph.

Class 8 are those partitions which pass right across
an A; area, cutting all d-line sections to the external
boundary defined by A;.

Consider any class o partition and the two areas
C, D defined by it. Suppose d;.. forms I’ loops with C
and D then (i) the a partition cuts I’ 4 1 sections of
d,.. implying that a section of d;.. lies along 8; (ii)
the « partition cuts I’ sections of d;...

N
N .

Fi1g. 13. Disconnected
singular configurations pecul-
iar to the fixed-angle case.

%
e d - ling
@ &)
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In the second case we have found a partition such
that p = I”. In the first case p = I’ + 1. However,
since d;.. does not form loops with itself then in the
first case we can see, by studying the class 8 parti-
tions transversing the I’ loops, that there is a class 8
partition such that p < I”. If for d,..p is less than 1"
there is no pole; if p=1" there is no pole if L>2+1,
where L is the length of this d line. But this is a
simple consequence of a ¢* theory. However, if we
scale over the d line and the lines of the loops, then
p = I” + 1 and we generate the singular configura-
tions A1-D3 together with the “disconnected” con-
figurations of (a) and (b) above. Similarly, if we had
a (d 4 1) line then we generate the same family but
the order of the pole is reduced by 1. The fact that a
subconfiguration of the graph which would not be a
singular configuration when d lines forming loops
were not considered, but is when they are, is illus-
trated in Fig. 14.

We now naturally ask whether disconnected sets
giving rise to a zero of ¢’ and forming !' loops with
the sequence D give poles. Here it is possible that
p = 1" + 1 but then the length (L) of the set is
greater than d + 27 4+ 1 and there is no pole.
When p = I” we have to show the inequality L >
2l + 1. In general, the length of such a disconnected
set is less than d, but the fact that all partitions such
that p < I’ must be excluded implies that with any
loop formed, (i) we need two lines of the disconnected
set to form it or (ii) there exists another line in the
set not forming part of a loop.

Careful calculation gives the lower bound. If we
include lines of the loop in our scaling set then the
problem of finding singular configurations is imme-
diately simplified since our set now consists of a
disconnected d line not forming loops with the D
sequence, together with loops. The problem then
reduces to that of the connected-loop d line.

IV. THE RESCALING PROCEDURE

We must now go back to the original integrand
and rescale. Each singularity is or can be associated
with at most two connected or quasiconnected
(d 4+ «) lines where a > 0.

First, for simplicity, we consider only those graphs
where there is only one singularity on any (d + «)
line. We have the following prescription: Examine
whether any proper subset of the singular set is a
singular set of the same order as the complete singu-
lar set.

(i) If there is no such subset, then scale the
(d + @) line together with the complete singular set.
For instance, in the example in Fig. 4, there is no
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Fig. 14. d lines forming loops.

singular subset of order 2. There is no such subset
if the order of the pole is greater than 1.

(i) If there are proper subsets of a first-order
singular configuration also of the first order, then
all such proper subsets together with the d line are
to be scaled in succession. Because of the omission
of terms in ¢, C, h at each scaling, new subsets
leading to first-order poles are generated. Scale over
these as for the other proper subsets. Any «’s of the
singular configuration not scaled are then scaled with
the d line. Finally scale the d line. Menke’ has
studied certain special cases of singular configurations
where the number of scalings is greater than that
given by the prescription above due to the occurrence
of disconnected scalings. An example of the preserip-
tion is given in the second diagram of Fig. 7. The
subsets with the d line are scaled in the following se-
quence (4, 5), (6, 7), (10, 11), (16, 17), (12, 13),
8, 9, 14, 15, 18, 19).

(iii) If the singular configuration is associated
with two (d -+ «) lines, scale one of the (d + «) lines
first and then apply (i) or (ii) to the second (d + «)
line and the singular configuration, depending on
whether the configuration is of the first or second
order. So effectively the singular configuration is
associated with only one (d + «) line.

(iv) If the singulairty is associated with the dis-
connected part of a quasiconnected d line it is also
associated with a connected d line. One scales the
configuration with the connected d line first and then
the configuration with the quasiconnected d line.

Since in any sequence of scalings only those scal-
ings which have the minimum power of the scaling
variable as a factor in the numerator contribute to
the leading asymptotic behavior, we need only scale
those configurations giving the highest-order pole.

In the general case, we find that subelass of (d + «)
lines (@ > 0) with which we have associated con-

7M. M. Menke, “High Energy Behaviour of Feynman

Integrals Involving Singular Configurations,” (Cambridge
Preprint).
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nected and ‘“disconnected” singular configurations
which give rise to the highest-order pole.

(i) If this order is greater than 1, then suppose
there are ¢ configurations of order greater than 1
associated with a particular d line and p the number
of first-order poles. (a) If p is nonzero, then we use
the procedure (ii) above where instead of the d line
we read the d line together with the ¢ singular con-
figurations. (b) If p is zero, then we scale the d line
together with the ¢ singular configurations.

(ii) If the highest-order pole is one then we carry
out the procedure in (i1) above.

Having performed these scalings, we now integrate
according to Eq. (6) and the final integral must
necessarily converge. The final asymptotic behavior
is 7" In™'s, where 8 is the order of the highest-
order pole generated and M is the number of scalings
on 3-pole configurations.

By generating the highest-order poles for a d line
one is easily convinced that B is bounded below
by d — 2.

The argument is now as in the four-point case.’
‘We show that for the subclass of graphs with minimal
length d, the number of scalings is bounded, hence
the power of the logarithm in the asymptotic be-
havior is bounded.

However, this is obvious since each d line must be
connected to each of the five sections of the boundary
and each singular configuration is tightly bound to
the associated d lines.

Hence for a planar five-point graph in a ¢° theory
with minimal length d, the leading asymptotic be-
havior at fixed angle is proportional to s™***® In" s
where N is bounded with d.

Summing all planar graphs we have a genuine
asymptotic series whose leading asymptotic be-
havior is the leading asymptotic behavior of its
leading term, namely the Born term which, as s be-
comes large, becomes proportional to s,
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APPENDIX
Theorem 1. We now give the proof of (ii).

We have made p(> 2) connected d-line scalings,
the first d line having divided the graph into five

J. V. GREENMAN

distinct regions. The d lines, when traced on the
graph, define certain areas. Because no loops have
been formed by the d lines, each area is associated
with part of the external boundary line. Divide
these areas into two classes:

A type A area is one which is associated with part
of the external boundary not containing the vertex
of an external particle line.

A type B area is one associated with part of the
external boundary containing the vertex of an
external particle line. Take any section of the bound-
ary line and define an area A; (where the suffix
refers to the particular section b,) as the union of all
those type A areas associated with the section. Let
the type B area associated with the jth particle line
be labeled B;.

We define these particular areas A;, B; because
they make transparent the partition structure of the
graph after p d-line scalings.

There are & finite number of ways of combining
the ten areas A;, B; in the graph but avoiding
loops. We must consider each possibility in turn
and examine which partitions have been eliminated.
We only consider one configuration of A4,, B; here.
Those configurations likely to give rise to new phe-
nomena have also been studied and in these cases
the theorem still holds. Consider the configuration
in Fig. 15. Note that lines «;, -, s, s belong to all
d lines. Let us examine the structure of two areas
A, A; which have part of their boundaries in com-
mon. Consider, for instance, A; and A,. Now a d line
can either send two separate barriers down from
Z7, Zg t0 by, bs (a d’ line) or it can send one line down
dividing into two branches to b, b; (a d” line),

4 vevwvy @ possible decormected
d  line
e @ cisconnected
saction of this ling

Fic. 15. A disconnected scaling set chosen after p connected
d-line scalings.
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Lemma 1. Given two d' lines (d], d}), y; the
barrier from z,xs to b; of d and ¥} the barrier from
2,25 to by of di. Then y!, y; cannot have a line in
common.

Proof. By using the minimal properties of the
two d lines, (Fig. 16).

If there is more than one d” line, then (except
for possibly one of them) we can divide the d’’ lines
into two classes.

Class L are those d”’ lines whose barrier to b.(y.’)
branches off z,, before its barrier to b;(y.’).

Class R are those d’’ lines whose barrier to bs(y3’)
branches off z,,; before its barrier to b,(y.’).

Lemma 2. Class L and Class R d" lines cannot
overlap. We cannot have the sequences y;”* y}’,
yi'’, v’ and yi”, vy, vi', yi along 2., where
i # j;1,§ = 1, 2 indexing the two d’/ lines.

Proof. By simple application of the minimal
property of the two d lines (Fig. 17).

Corollary 1. Through every line of z,; there passes
a partition, either of s,; or s;, or both, unless there
is a d’ line containing some lines of z;,.

Corollary 2. A d’ line and a d” line cannot over-
lap. Hence Corollary 1 is true for every line of z,,.

Suppose there is in fact a d’ line lying along z,,
with a barrier Y, to b;. As we have seen from Lemma
2, only across certain lines of that part (z{,) of z,
lying between Y, and the apex of B, can partitions
of s4 pass. Label these lines a, --- a,; let the re-
maining lines of x{, be 2, - - - z,. Partitions of s,; cross
the z lines and in general some of the a lines. Let
the length of z,, be p; the length of z,, — z{, = z{}
be ¢; the length of ¥, be r and the length of the
two barriers of the d’ line containing Y, to bs, b.
bex+qg+rz+y.

Lemma 8. p+ 2. a> z.

Proof. By a simple application of the minimal
property of the d lines involved. Suppose there
exists a d’ line having its b; barrier (¥,) partly along
Z,2. There are several ways of erecting a disconnected
set of barriers stopping the partitions of invariants
Sas, Sa5. One way is to erect a continuous barrier

),

|

k Fi1a. 16. Overlapping d
lines.
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Fie. 17. Overlap-
ping d lines.

from z; to b; and to put a barrier along the a lines
of z,; and along z,,. By Lemma 3 the length of these
barriers is not less than the length of a d’’ line from
Q. to bs, by, namely = + y. Similarly, by the minimal
property of the d lines and Lemma 3, we can show
all other barriers stopping s;;, s.s partitions have
this lower bound.

Similarly one studies the structure of 4,, A, and
the same phenomena occurs. It is now simple to see
the possible disconnected sets and to obtain a lower
bound of d on their length. A typical example is
shown in Fig. 15.

We now prove Theorem 1 (iii).

Consider Fig. 3 where we have performed one
connected d-line scaling and then a disconnected d-
line scaling.

Define the connected d lines

@ @,1,7,3,13, 12, 14),

@ @,5,6,7, 3,12, 11, 10,9),
3) 4,5,6,1,7,12, 14, 15),
4 @&,5,6,7,1,3,12,14),

where the numbers refer to the indices of the s; labels
to the lines of the connected and disconnected lines.
Every line of the original d line occurs three times
in these sets (type a) except when the disconnected
d line lies along the original d line when this line
occurs four times in the sets (type b). Hence if we
cross any type a line of the original d line we can

o

000000000000000

Y,9, 8y, FoB balong ks the quasicennected d ne

F1c. 18. Formation of a quasiconnected d line.
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only eross that part of the fourth d line which is not
common to the other three, namely across the dis-
connected set. If we cross a type b line then we can-
not cross any other. Thus only those partitions are
allowed where two lines of the original d line are not
crossed and the disconnected set is crossed only once.
These are precisely the partitions remaining after the
connected and disconnected d-line scalings. In the
general case we have seen that we can always find
a connected d line containing any section of a dis-
connected d line unless we have placed a disconnected
barrier along the common boundary of two adjacent
A, areas. In this case we need to define a quasi-
connected d line as being a connected (d + «) line
in the rth type I section, of which we have removed a,
lines where Y, a, = «. Suppose, in particular, to

J. V. GREENMAN

stop partitions of invariants s;,, 8:; we had erected
the barriers described above, then the quasicon-
nected d line contains x5, 2,, x5, 2; and these barriers.
An example is given in Fig. 18. In the notation of
Lemma3p + >, a=zandr = 3.2+ 3. In
future scalings, we can never eliminate those parti-
tions of 8,; which cross z,; between P, and P, {where
the continuous barrier from z,, to b, leaves z,,),
since this would transform a lines into b lines. We
could then rederive the inequality of the lemma
asr > 2." z -+ s where & > s leading to a con--
tradiction with the equality above. The structure of
this part of the graph therefore becomes fixed. Hence
after more connected d-line scalings we have exactly
the same choice of erecting barriers to b, b, as before
the first disconnected set.
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